Empty Squares in Arbitrary Orientation Among Points

Authors Sang Won Bae , Sang Duk Yoon



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.13.pdf
  • Filesize: 0.75 MB
  • 17 pages

Document Identifiers

Author Details

Sang Won Bae
  • Division of Computer Science and Engineering, Kyonggi University, Suwon, South Korea
Sang Duk Yoon
  • Department of Service and Design Engineering, Sungshin Women’s University, Seoul, South Korea

Cite As Get BibTex

Sang Won Bae and Sang Duk Yoon. Empty Squares in Arbitrary Orientation Among Points. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.SoCG.2020.13

Abstract

This paper studies empty squares in arbitrary orientation among a set P of n points in the plane. We prove that the number of empty squares with four contact pairs is between Ω(n) and O(n²), and that these bounds are tight, provided P is in a certain general position. A contact pair of a square is a pair of a point p ∈ P and a side 𝓁 of the square with p ∈ 𝓁. The upper bound O(n²) also applies to the number of empty squares with four contact points, while we construct a point set among which there is no square of four contact points. We then present an algorithm that maintains a combinatorial structure of the L_∞ Voronoi diagram of P, while the axes of the plane continuously rotate by 90 degrees, and simultaneously reports all empty squares with four contact pairs among P in an output-sensitive way within O(slog n) time and O(n) space, where s denotes the number of reported squares. Several new algorithmic results are also obtained: a largest empty square among P and a square annulus of minimum width or minimum area that encloses P over all orientations can be computed in worst-case O(n² log n) time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • empty square
  • arbitrary orientation
  • Erdős - Szekeres problem
  • L_∞ Voronoi diagram
  • largest empty square problem
  • square annulus

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Abellanas, Ferran Hurtado, C. Icking, L. Ma, B. Palop, and P.A. Ramos. Best fitting rectangles. In Proc. Euro. Workshop Comput. Geom. (EuroCG 2003), 2003. Google Scholar
  2. A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a matrix-searching algorithm. Alogorithmica, 2:195-208, 1987. Google Scholar
  3. A. Aggarwal and S. Suri. Fast algorithm for computing the largest empty rectangle. In Proc. 3rd ACM Sympos. Comput. Geom. (SoCG 1987), pages 278-290, 1987. Google Scholar
  4. Carlos Alegrí­a-Galicia, David Orden, Carlos Seara, and Jorge Urrutia. On the Oβ-hull of a planar point set. Comput. Geom.: Theory Appl., 68:277-291, 2018. Google Scholar
  5. Sang Won Bae. Computing a minimum-width square annulus in arbitrary orientation. Theoret. Comput. Sci., 718:2-13, 2018. Google Scholar
  6. Sang Won Bae. On the minimum-area rectangular and square annulus problem, 2019. submitted to CGTA. URL: http://arxiv.org/abs/1904.06832.
  7. Sang Won Bae, Chunseok Lee, Hee-Kap Ahn, Sunghee Choi, and Kyung-Yong Chwa. Computing minimum-area rectilinear convex hull and L-shape. Comput. Geom.: Theory Appl., 42(9):903-912, 2009. Google Scholar
  8. Sang Won Bae and Sang Duk Yoon. Empty squares in arbitrary orientation among points, 2019. URL: http://arxiv.org/abs/1911.12988.
  9. I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canad. Math. Bull., 30:436-445, 1987. Google Scholar
  10. I. Bárány and P. Valtr. A positive fraction Erdős-Szekeres theorem. Discrete Comput. Geom., 19(3):335-342, 1998. Google Scholar
  11. I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons. Studia Sci. Math. Hungar., 41:243-269, 2005. Google Scholar
  12. J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete Comput. Geom., 19(4):485-519, 1998. Google Scholar
  13. J.E. Boyce, D.P. Dobkin, R.L. Drysdale, and L.J. Guibas. Finding extreman polygons. SIAM J. Comput., 14:134-147, 1985. Google Scholar
  14. Jeet Chaudhuri, Subhas C. Nandy, and Sandip Das. Largest empty rectangle among a point set. J. Algo., 46:54-78, 2003. Google Scholar
  15. B. Chazelle, R.L. Drysdale, and D.T. Lee. Computing the largest empty rectangle. SIAM J. Comput., 15:300-315, 1986. Google Scholar
  16. David P. Dobkin, Herbert Edelsbrunner, and Mark H. Overmars. Searching for empty convex polygons. Algorithmica, 5(1):561-571, 1990. Google Scholar
  17. R.L. Drysdale and J.W. Jaromczyk. A note on lower bounds for the maximum area and maximum perimeter k-gon problems. Inform. Proc. Lett., 32(6):301-303, 1989. Google Scholar
  18. A. Dumistrescu. Planar sets with few empty convex polygons. Studia Sci. Math. Hungar., 36:93-109, 2000. Google Scholar
  19. David Eppstein. New algorithms for minimum area k-gons. In Proc. 3rd Annu. ACM-SIAM Sympos. Discrete Algo. (SODA'92), pages 83-88, 1992. Google Scholar
  20. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger. Finding minimum area k-gons. Discrete Comput. Geom., 7(1):45-58, 1992. Google Scholar
  21. Pual Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz., 5:52-54, 1978. Google Scholar
  22. Pual Erdős and Georege Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463-470, 1935. Google Scholar
  23. Pual Erdős and Georege Szekeres. On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest Eötvös Sect. Math., 3-4:53-62, 1961. Google Scholar
  24. Tobias Gerken. Empty convex hexagons in planar point sets. Discrete Comput. Geom., 39(1):239-272, 2008. Google Scholar
  25. Olga N. Gluchshenko, Horst W. Hamacher, and Arie Tamir. An optimal O(n log n) algorithm for finding an enclosing planar rectilinear annulus of minimum width. Operations Research Lett., 37(3):168-170, 2009. Google Scholar
  26. H. Harborth. Kovexe Fünfecke in ebenen Punktmengen. Elem. Math., 33:116-118, 1978. Google Scholar
  27. J. Hershberger. Finding the upper envelope of n line segments in O(nlog n) time. Inform. Proc. Lett., 33:169-174, 1989. Google Scholar
  28. J.D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482-484, 1983. Google Scholar
  29. D. T. Lee. Two-dimensional Voronoi diagrams in the L_p-metric. J. ACM, 27:604-618, 1980. Google Scholar
  30. D.T. Lee and C.K. Wong. Voronol diagrams in L₁(L_∞) metrics with 2-dimensional storage applications. SIAM J. Comput., 9:200-211, 1980. Google Scholar
  31. M. Mckenna, J. O'Rourke, and S. Suri. Finding the largest rectangle in an orthogonal polygon. In Proc. 23rd Annual Allerton Conf. Comm. Control Comput., 1985. Google Scholar
  32. J.S.B. Mitchell, G. Rote, G. Sundaram, and G. Woeginger. Counting convex polygons in planar point sets. Inform. Proc. Lett., 56(1):45-49, 1995. Google Scholar
  33. W. Morris and V. Soltan. The Erdős-Szekeres problem on points in convex position - a survey. Bull. Amer. Math. Soc., 33:437-458, 2000. Google Scholar
  34. Walter Morris and Valeriu Soltan. The Erdős-Szekeres problem. In John Forbes Nash, Jr. and Michael Th. Rassias, editors, Open Problems in Mathematics, pages 351-375. Springer International Publishing, Cham, 2016. Google Scholar
  35. A. Naamad, D.T. Lee, and W.L. Hsu. On the maximum empty rectangle problem. Discrete Appl. Math., 8:267-277, 1984. Google Scholar
  36. C. M. Nicolás. The empty hexagon theorem. Discrete Comput. Geom., 38(2):389-397, 2007. Google Scholar
  37. M. Orlowski. A new algorithm for largest empty rectangle problem. Algorithmica, 5:65-73, 1990. Google Scholar
  38. Rom Pinchasi, Radoš Radoičić, and Micha Sharir. On empty convex polygons in a planar point set. J. Combinat. Theory, Series A, 113(3):385-419, 2006. Google Scholar
  39. G. Rote, Z. Wang, G. Woeginger, and B. Zhi. Counting k-subsets and convex k-gons in the plane. Inform. Proc. Lett., 38(4):149-151, 1991. Google Scholar
  40. G. Rote and G. Woeginger. Counting convex k-gons in planar point sets. Inform. Proc. Lett., 41(4):191-194, 1992. Google Scholar
  41. George Szekeres and Lindsay Peters. Computer solution to the 17-point Erdős-Szekeres problem. ANZIAM J., 48(2):151-164, 2006. Google Scholar
  42. P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Sci. Math. Hungar., 30:155-163, 1995. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail