We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the 1-dimensional homology classes with ℤ₂ coefficients in a given simplicial complex K. This problem has been extensively studied in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al. [Dey et al., 2018], runs in O(N^ω + N² g) time, where N denotes the number of simplices in K, g denotes the rank of the 1-homology group of K, and ω denotes the exponent of matrix multiplication. In this paper, we present two conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex K. The first algorithm runs in Õ(m^ω) time, where m denotes the number of edges in K, whereas the second algorithm runs in O(m^ω + N m^{ω-1}) time. We also study the problem of finding a minimum cycle basis in an undirected graph G with n vertices and m edges. The best known algorithm for this problem runs in O(m^ω) time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in Õ(m^ω) time.
@InProceedings{rathod:LIPIcs.SoCG.2020.64, author = {Rathod, Abhishek}, title = {{Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {64:1--64:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.64}, URN = {urn:nbn:de:0030-drops-122223}, doi = {10.4230/LIPIcs.SoCG.2020.64}, annote = {Keywords: Computational topology, Minimum homology basis, Minimum cycle basis, Simplicial complexes, Matrix computations} }