LIPIcs.CCC.2020.2.pdf
- Filesize: 0.54 MB
- 21 pages
We show that any Algebraic Branching Program (ABP) computing the polynomial ∑_{i=1}^n xⁿ_i has at least Ω(n²) vertices. This improves upon the lower bound of Ω(nlog n), which follows from the classical result of Baur and Strassen [Volker Strassen, 1973; Walter Baur and Volker Strassen, 1983], and extends the results of Kumar [Mrinal Kumar, 2019], which showed a quadratic lower bound for homogeneous ABPs computing the same polynomial. Our proof relies on a notion of depth reduction which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial ∑_{i=1}^n xⁿ_i can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial ∑_{i=1}^n xⁿ_i + ε(𝐱), for a structured "error polynomial" ε(𝐱). To complete the proof, we then observe that the lower bound in [Mrinal Kumar, 2019] is robust enough and continues to hold for all polynomials ∑_{i=1}^n xⁿ_i + ε(𝐱), where ε(𝐱) has the appropriate structure.
Feedback for Dagstuhl Publishing