To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly k. More precisely, we aim to determine, for any finite constraint family, the optimal running time f(k)n^g(k) required to find satisfying assignments that set precisely k of the n variables to 1. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of g(k) into four regimes: 1) Brute force is essentially best-possible, i.e., g(k) = (1 ± o(1))k, 2) the best algorithms are as fast as current k-clique algorithms, i.e., g(k) = (ω/3 ± o(1))k, 3) the exponent has sublinear dependence on k with g(k) ∈ [Ω(∛k), O(√k)], or 4) the problem is fixed-parameter tractable, i.e., g(k) = O(1). This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a f(k)n^(4√k)-time algorithm for SubsetSum with precedence constraints parameterized by the target k - particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.
@InProceedings{kunnemann_et_al:LIPIcs.CCC.2020.27, author = {K\"{u}nnemann, Marvin and Marx, D\'{a}niel}, title = {{Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction}}, booktitle = {35th Computational Complexity Conference (CCC 2020)}, pages = {27:1--27:28}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-156-6}, ISSN = {1868-8969}, year = {2020}, volume = {169}, editor = {Saraf, Shubhangi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.27}, URN = {urn:nbn:de:0030-drops-125791}, doi = {10.4230/LIPIcs.CCC.2020.27}, annote = {Keywords: Fine-grained complexity theory, algorithmic classification theorem, multivariate algorithms and complexity, constraint satisfaction problems, satisfiability} }
Feedback for Dagstuhl Publishing