LIPIcs.CCC.2020.38.pdf
- Filesize: 0.61 MB
- 37 pages
In this paper, we analyze the sum of squares hierarchy (SOS) on the ordering principle on n elements (which has N = Θ(n²) variables). We prove that degree O(√nlog(n)) SOS can prove the ordering principle. We then show that this upper bound is essentially tight by proving that for any ε > 0, SOS requires degree Ω(n^(1/2 - ε)) to prove the ordering principle.
Feedback for Dagstuhl Publishing