LIPIcs.APPROX-RANDOM.2020.12.pdf
- Filesize: 0.65 MB
- 20 pages
We introduce two versions of a new sketch for approximately embedding the Gaussian kernel into Euclidean inner product space. These work by truncating infinite expansions of the Gaussian kernel, and carefully invoking the RecursiveTensorSketch [Ahle et al. SODA 2020]. After providing concentration and approximation properties of these sketches, we use them to approximate the kernel distance between points sets. These sketches yield almost (1+ε)-relative error, but with a small additive α term. In the first variants the dependence on 1/α is poly-logarithmic, but has higher degree of polynomial dependence on the original dimension d. In the second variant, the dependence on 1/α is still poly-logarithmic, but the dependence on d is linear.
Feedback for Dagstuhl Publishing