LIPIcs.APPROX-RANDOM.2020.15.pdf
- Filesize: 495 kB
- 14 pages
One of the central open questions in the theory of average-case complexity is to establish the equivalence between the worst-case and average-case complexity of the Polynomial-time Hierarchy (PH). One general approach is to show that there exists a PH-computable hitting set generator whose security is based on some NP-hard problem. We present the limits of such an approach, by showing that there exists no exponential-time-computable hitting set generator whose security can be proved by using a nonadaptive randomized polynomial-time reduction from any problem outside AM ∩ coAM, which significantly improves the previous upper bound BPP^NP of Gutfreund and Vadhan (RANDOM/APPROX 2008 [Gutfreund and Vadhan, 2008]). In particular, any security proof of a hitting set generator based on some NP-hard problem must use either an adaptive or non-black-box reduction (unless the polynomial-time hierarchy collapses). To the best of our knowledge, this is the first result that shows limits of black-box reductions from an NP-hard problem to some form of a distributional problem in DistPH. Based on our results, we argue that the recent worst-case to average-case reduction of Hirahara (FOCS 2018 [Hirahara, 2018]) is inherently non-black-box, without relying on any unproven assumptions. On the other hand, combining the non-black-box reduction with our simulation technique of black-box reductions, we exhibit the existence of a "non-black-box selector" for GapMCSP, i.e., an efficient algorithm that solves GapMCSP given as advice two circuits one of which is guaranteed to compute GapMCSP.
Feedback for Dagstuhl Publishing