,
Petr A. Golovach
,
Fahad Panolan
,
Kirill Simonov
Creative Commons Attribution 3.0 Unported license
We consider 𝓁₁-Rank-r Approximation over {GF}(2), where for a binary m× n matrix 𝐀 and a positive integer constant r, one seeks a binary matrix 𝐁 of rank at most r, minimizing the column-sum norm ‖ 𝐀 -𝐁‖₁. We show that for every ε ∈ (0, 1), there is a {randomized} (1+ε)-approximation algorithm for 𝓁₁-Rank-r Approximation over {GF}(2) of running time m^{O(1)}n^{O(2^{4r}⋅ ε^{-4})}. This is the first polynomial time approximation scheme (PTAS) for this problem.
@InProceedings{fomin_et_al:LIPIcs.APPROX/RANDOM.2020.32,
author = {Fomin, Fedor V. and Golovach, Petr A. and Panolan, Fahad and Simonov, Kirill},
title = {{Low-Rank Binary Matrix Approximation in Column-Sum Norm}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
pages = {32:1--32:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-164-1},
ISSN = {1868-8969},
year = {2020},
volume = {176},
editor = {Byrka, Jaros{\l}aw and Meka, Raghu},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.32},
URN = {urn:nbn:de:0030-drops-126355},
doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.32},
annote = {Keywords: Binary Matrix Factorization, PTAS, Column-sum norm}
}