LIPIcs.CONCUR.2020.39.pdf
- Filesize: 0.68 MB
- 17 pages
We study countably infinite MDPs with parity objectives. Unlike in finite MDPs, optimal strategies need not exist, and may require infinite memory if they do. We provide a complete picture of the exact strategy complexity of ε-optimal strategies (and optimal strategies, where they exist) for all subclasses of parity objectives in the Mostowski hierarchy. Either MD-strategies, Markov strategies, or 1-bit Markov strategies are necessary and sufficient, depending on the number of colors, the branching degree of the MDP, and whether one considers ε-optimal or optimal strategies. In particular, 1-bit Markov strategies are necessary and sufficient for ε-optimal (resp. optimal) strategies for general parity objectives.
Feedback for Dagstuhl Publishing