Consider the following simple coloring algorithm for a graph on n vertices. Each vertex chooses a color from {1, ..., Δ(G) + 1} uniformly at random. While there exists a conflicted vertex choose one such vertex uniformly at random and recolor it with a randomly chosen color. This algorithm was introduced by Bhartia et al. [MOBIHOC'16] for channel selection in WIFI-networks. We show that this algorithm always converges to a proper coloring in expected O(n log Δ) steps, which is optimal and proves a conjecture of Chakrabarty and de Supinski [SOSA'20].
@InProceedings{bertschinger_et_al:LIPIcs.ESA.2020.17, author = {Bertschinger, Daniel and Lengler, Johannes and Martinsson, Anders and Meier, Robert and Steger, Angelika and Truji\'{c}, Milo\v{s} and Welzl, Emo}, title = {{An Optimal Decentralized (\Delta + 1)-Coloring Algorithm}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {17:1--17:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.17}, URN = {urn:nbn:de:0030-drops-128837}, doi = {10.4230/LIPIcs.ESA.2020.17}, annote = {Keywords: Decentralized Algorithm, Distributed Computing, Graph Coloring, Randomized Algorithms} }
Feedback for Dagstuhl Publishing