Creative Commons Attribution 3.0 Unported license
Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer admit the spanner property, but this collateral damage is bounded by a fraction of the size of the attack. It is known that Ω(nlog n) edges are needed to achieve this strong property, where n is the number of vertices in the network, even in one dimension. Constructions of reliable geometric (1+ε)-spanners, for n points in ℝ^d, are known, where the resulting graph has 𝒪(n log n log log⁶n) edges. Here, we show randomized constructions of smaller size spanners that have the desired reliability property in expectation or with good probability. The new construction is simple, and potentially practical - replacing a hierarchical usage of expanders (which renders the previous constructions impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that has linear number of edges. Using this, we present a construction of a reliable spanner in ℝ^d with 𝒪(n log log²n log log log n) edges.
@InProceedings{buchin_et_al:LIPIcs.ESA.2020.27,
author = {Buchin, Kevin and Har-Peled, Sariel and Ol\'{a}h, D\'{a}niel},
title = {{Sometimes Reliable Spanners of Almost Linear Size}},
booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)},
pages = {27:1--27:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-162-7},
ISSN = {1868-8969},
year = {2020},
volume = {173},
editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.27},
URN = {urn:nbn:de:0030-drops-128934},
doi = {10.4230/LIPIcs.ESA.2020.27},
annote = {Keywords: Geometric spanners, vertex failures, reliability}
}