LIPIcs.ESA.2020.46.pdf
- Filesize: 0.6 MB
- 22 pages
We study clustering problems such as k-Median, k-Means, and Facility Location in graphs of low highway dimension, which is a graph parameter modeling transportation networks. It was previously shown that approximation schemes for these problems exist, which either run in quasi-polynomial time (assuming constant highway dimension) [Feldmann et al. SICOMP 2018] or run in FPT time (parameterized by the number of clusters k, the highway dimension, and the approximation factor) [Becker et al. ESA 2018, Braverman et al. 2020]. In this paper we show that a polynomial-time approximation scheme (PTAS) exists (assuming constant highway dimension). We also show that the considered problems are NP-hard on graphs of highway dimension 1.
Feedback for Dagstuhl Publishing