LIPIcs.ESA.2020.53.pdf
- Filesize: 1.28 MB
- 21 pages
We present new bounds for the required area of Right Angle Crossing (RAC) drawings for complete graphs, i.e. drawings where any two crossing edges are perpendicular to each other. First, we improve upon results by Didimo et al. [Walter Didimo et al., 2011] and Di Giacomo et al. [Emilio Di Giacomo et al., 2011] by showing how to compute a RAC drawing with three bends per edge in cubic area. We also show that quadratic area can be achieved when allowing eight bends per edge in general or with three bends per edge for p-partite graphs. As a counterpart, we prove that in general quadratic area is not sufficient for RAC drawings with three bends per edge.
Feedback for Dagstuhl Publishing