LIPIcs.ESA.2020.56.pdf
- Filesize: 2.19 MB
- 15 pages
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-Peled & Raichel, Discrete Comput. Geom. 53:547 - 568, 2015] allows to achieve an expected runtime complexity of 𝒪(n log⁴ n), while still maintaining the simplicity of our approach. We implemented the full algorithm for weighted points as input sites, based on CGAL. The results of an experimental evaluation of our implementation suggest 𝒪(n log² n) as a practical bound on the runtime. Our algorithm can be extended to handle also additive weights in addition to multiplicative weights, and it yields a truly simple 𝒪(n log n) solution for solving the one-dimensional version of this problem.
Feedback for Dagstuhl Publishing