We study the approximability of the NP-complete Maximum Minimal Feedback Vertex Set problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: Maximum Minimal Vertex Cover, for which the best achievable approximation ratio is √n, and Upper Dominating Set, which does not admit any n^{1-ε} approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for Max Min FVS with a ratio of O(n^{2/3}), as well as a matching hardness of approximation bound of n^{2/3-ε}, improving the previous known hardness of n^{1/2-ε}. Along the way, we also obtain an O(Δ)-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from Δ ≥ 9 to Δ ≥ 6. Having settled the problem’s approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio r, produces an r-approximate solution in time n^O(n/r^{3/2}). This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio r and ε > 0, no algorithm can r-approximate this problem in time n^{O((n/r^{3/2})^{1-ε})}, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.
@InProceedings{dublois_et_al:LIPIcs.ISAAC.2020.3, author = {Dublois, Louis and Hanaka, Tesshu and Khosravian Ghadikolaei, Mehdi and Lampis, Michael and Melissinos, Nikolaos}, title = {{(In)approximability of Maximum Minimal FVS}}, booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)}, pages = {3:1--3:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-173-3}, ISSN = {1868-8969}, year = {2020}, volume = {181}, editor = {Cao, Yixin and Cheng, Siu-Wing and Li, Minming}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.3}, URN = {urn:nbn:de:0030-drops-133477}, doi = {10.4230/LIPIcs.ISAAC.2020.3}, annote = {Keywords: Approximation Algorithms, ETH, Inapproximability} }
Feedback for Dagstuhl Publishing