LIPIcs.ISAAC.2020.28.pdf
- Filesize: 0.76 MB
- 15 pages
Given an ordered sequence of points P = {p₁, p₂, … , p_n}, we are interested in computing T, the set of distinct triangles occurring over all Delaunay triangulations of contiguous subsequences within P. We present a deterministic algorithm for this purpose with near-optimal time complexity O(|T|log n). Additionally, we prove that for an arbitrary point set in random order, the expected number of Delaunay triangles occurring over all contiguous subsequences is Θ(nlog n).
Feedback for Dagstuhl Publishing