LIPIcs.ISAAC.2020.40.pdf
- Filesize: 0.63 MB
- 13 pages
Let Π₁, Π₂, …, Π_c be graph properties for a fixed integer c. Then, (Π₁, Π₂, …, Π_c)-Partition is the problem of asking whether the vertex set of a given graph can be partitioned into c subsets V₁, V₂, …, V_c such that the subgraph induced by V_i satisfies the graph property Π_i for every i ∈ {1,2, …, c}. Minimization and parameterized variants of (Π₁, Π₂, …, Π_c)-Partition have been studied for several specific graph properties, where the size of the vertex subset V₁ satisfying Π₁ is minimized or taken as a parameter. In this paper, we first show that the minimization variant is hard to approximate for any nontrivial additive hereditary graph properties, unless c = 2 and both Π₁ and Π₂ are classes of edgeless graphs. We then give FPT algorithms for the parameterized variant when restricted to the case where c = 2, Π₁ is a hereditary graph property, and Π₂ is the class of acyclic graphs.
Feedback for Dagstuhl Publishing