Shortest-Path Queries in Geometric Networks

Author Eunjin Oh



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2020.52.pdf
  • Filesize: 0.56 MB
  • 15 pages

Document Identifiers

Author Details

Eunjin Oh
  • Department of Computer Science and Engineering, POSETCH, Pohang, South Korea

Cite As Get BibTex

Eunjin Oh. Shortest-Path Queries in Geometric Networks. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.ISAAC.2020.52

Abstract

A Euclidean t-spanner for a point set V ⊂ ℝ^d is a graph such that, for any two points p and q in V, the distance between p and q in the graph is at most t times the Euclidean distance between p and q. Gudmundsson et al. [TALG 2008] presented a data structure for answering ε-approximate distance queries in a Euclidean spanner in constant time, but it seems unlikely that one can report the path itself using this data structure. In this paper, we present a data structure of size O(nlog n) that answers ε-approximate shortest-path queries in time linear in the size of the output.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Shortest path
  • Euclidean spanner
  • data structure

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rachit Agarwal and P. Brighten Godfrey. Distance oracles for stretch less than 2. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, page 526–538, USA, 2013. Society for Industrial and Applied Mathematics. Google Scholar
  2. Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H. Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science, pages 88-94. Springer, 2000. URL: https://doi.org/10.1007/10719839_9.
  3. Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theoretical Computer Science, 321(1):5-21, 2004. Latin American Theoretical Informatics. Google Scholar
  4. Timothy M. Chan and Dimitrios Skrepetos. Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk Graphs. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International Symposium on Computational Geometry (SoCG 2018), volume 99 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1-24:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.24.
  5. Timothy M. Chan and Dimitrios Skrepetos. Faster approximate diameter and distance oracles in planar graphs. Algorithmica, 81(8):3075–3098, August 2019. URL: https://doi.org/10.1007/s00453-019-00570-z.
  6. Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Almost optimal distance oracles for planar graphs. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 138–151, New York, NY, USA, 2019. Association for Computing Machinery. URL: https://doi.org/10.1145/3313276.3316316.
  7. Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. In Proceedings of the Tenth Annual Symposium on Computational Geometry, SCG '94, pages 132-139, New York, NY, USA, 1994. ACM. URL: https://doi.org/10.1145/177424.177579.
  8. Michael Elkin and Shay Solomon. Optimal Euclidean spanners: Really short, thin, and lanky. J. ACM, 62(5), November 2015. URL: https://doi.org/10.1145/2819008.
  9. Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, page 483–492, New York, NY, USA, 2003. Association for Computing Machinery. URL: https://doi.org/10.1145/780542.780613.
  10. Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better tradeoffs for exact distance oracles in planar graphs. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 515-529, 2018. URL: https://doi.org/10.1137/1.9781611975031.34.
  11. Qian-Ping Gu and Gengchun Xu. Constant query time (1+ε)-approximate distance oracle for planar graphs. Theoretical Computer Science, 761:78-88, 2019. Google Scholar
  12. Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Approximate distance oracles for geometric spanners. ACM Trans. Algorithms, 4(1):10:1-10:34, March 2008. URL: https://doi.org/10.1145/1328911.1328921.
  13. Joachim Gudmundsson, Giri Narasimhan, and Michiel Smid. Fast pruning of geometric spanners. In Volker Diekert and Bruno Durand, editors, STACS 2005, pages 508-520, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. Google Scholar
  14. Joachim Gudmundsson, Giri Narasimhan, and Michiel Smid. Applications of Geometric Spanner Networks, pages 86-90. Springer New York, New York, NY, 2016. URL: https://doi.org/10.1007/978-1-4939-2864-4_15.
  15. Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2(1):209-233, 1987. Google Scholar
  16. Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences, 39(2):126-152, 1989. Google Scholar
  17. Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing, 13(2):338-355, 1984. URL: https://doi.org/10.1137/0213024.
  18. John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing, 28(6):2215-2256, 1999. Google Scholar
  19. Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata, Languages and Programming, pages 135-146, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. Google Scholar
  20. H. Le and S. Solomon. Truly optimal euclidean spanners. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1078-1100, 2019. Google Scholar
  21. Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press, 2007. URL: https://doi.org/10.1017/CBO9780511546884.
  22. M. Patrascu and L. Roditty. Distance oracles beyond the thorup-zwick bound. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 815-823, 2010. Google Scholar
  23. M. Patrascu, L. Roditty, and M. Thorup. A new infinity of distance oracles for sparse graphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 738-747, 2012. Google Scholar
  24. Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM Journal on Computing, 43(1):300-311, 2014. Google Scholar
  25. Jose L. Santos. Real-world applications of shortest path algorithms. In Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors, The Shortest Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, November 13-14, 2006, volume 74 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 1-17. DIMACS/AMS, 2006. URL: https://doi.org/10.1090/dimacs/074/01.
  26. Christian Sommer. Shortest-path queries in static networks. ACM Comput. Surv., 46(4), March 2014. URL: https://doi.org/10.1145/2530531.
  27. Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, January 2005. URL: https://doi.org/10.1145/1044731.1044732.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail