The Strongish Planted Clique Hypothesis and Its Consequences

Authors Pasin Manurangsi, Aviad Rubinstein, Tselil Schramm



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2021.10.pdf
  • Filesize: 0.56 MB
  • 21 pages

Document Identifiers

Author Details

Pasin Manurangsi
  • Google Research, Mountain View, CA, USA
Aviad Rubinstein
  • Stanford University, CA, USA
Tselil Schramm
  • Stanford University, CA, USA

Acknowledgements

Pasin would like to thank Michal Pilipczuk and Daniel Lokshtanov for posing the approximability of Densest k-Subhypergraph as an open problem at Dagstuhl Seminar on New Horizons in Parameterized Complexity, and for helpful discussions.

Cite As Get BibTex

Pasin Manurangsi, Aviad Rubinstein, and Tselil Schramm. The Strongish Planted Clique Hypothesis and Its Consequences. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/LIPIcs.ITCS.2021.10

Abstract

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time n^Ω(log n) (so that the state-of-the-art running time of n^O(log n) is optimal up to a constant in the exponent).
We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner k-Forest, and Directed Steiner Network with k terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This inapproximability ratio improves upon the previous best k^o(1) factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter k.
Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, improving the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Fixed parameter tractability
Keywords
  • Planted Clique
  • Densest k-Subgraph
  • Hardness of Approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud and Greg Bodwin. Reachability preservers: New extremal bounds and approximation algorithms. In SODA, pages 1865-1883, 2018. URL: https://doi.org/10.1137/1.9781611975031.122.
  2. Michael Alekhnovich. More on average case vs approximation complexity. Computational Complexity, 20(4):755-786, 2011. Google Scholar
  3. Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein. Inapproximability of densest κ-subgraph from average case hardness, 2011. Google Scholar
  4. Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products. Comput. Complex., 5(1):60-75, 1995. URL: https://doi.org/10.1007/BF01277956.
  5. Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209-223, 1997. URL: https://doi.org/10.1007/BF02523189.
  6. Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local one-way functions. SIAM J. Comput., 42(5):2008-2037, 2013. URL: https://doi.org/10.1137/120884857.
  7. Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptosystem from different assumptions. In STOC, pages 171-180, 2010. Google Scholar
  8. Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational complexity and information asymmetry in financial products (extended abstract). In ICS, pages 49-65, 2010. URL: http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/5.html.
  9. Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein. Can almost everybody be almost happy? In ITCS, pages 1-9, 2016. URL: https://doi.org/10.1145/2840728.2840731.
  10. Maria-Florina Balcan, Christian Borgs, Mark Braverman, Jennifer T. Chayes, and Shang-Hua Teng. Finding endogenously formed communities. In SODA, pages 767-783, 2013. URL: https://doi.org/10.1137/1.9781611973105.55.
  11. Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh K. Kothari, Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM J. Comput., 48(2):687-735, 2019. URL: https://doi.org/10.1137/17M1138236.
  12. Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite relaxations for average-case and generalized constraint satisfaction. In ITCS, pages 197-214, 2013. Google Scholar
  13. Siddharth Barman. Approximating Nash equilibria and dense subgraphs via an approximate version of Carathéodory’s theorem. SIAM J. Comput., 47(3):960-981, 2018. URL: https://doi.org/10.1137/15M1050574.
  14. Mihir Bellare, Shafi Goldwasser, Carsten Lund, and A. Russeli. Efficient probabilistically checkable proofs and applications to approximations. In STOC, pages 294-304, 1993. URL: https://doi.org/10.1145/167088.167174.
  15. Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner forest. Inf. Comput., 222:93-107, 2013. URL: https://doi.org/10.1016/j.ic.2012.10.007.
  16. Piotr Berman and Georg Schnitger. On the complexity of approximating the independent set problem. In STACS, pages 256-268, 1989. URL: https://doi.org/10.1007/BFb0028990.
  17. Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal component detection. In COLT, pages 1046-1066, 2013. URL: http://proceedings.mlr.press/v30/Berthet13.html.
  18. Tengyao Wang Quentin Berthet and Richard J Samworth. Statistical and computational trade-offs in estimation of sparse principal components. The Annals of Statistics, 2016. Google Scholar
  19. Amey Bhangale, Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Bicovering: Covering edges with two small subsets of vertices. In ICALP, pages 6:1-6:12, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.6.
  20. Umang Bhaskar, Yu Cheng, Young Kun Ko, and Chaitanya Swamy. Hardness results for signaling in bayesian zero-sum and network routing games. In EC, pages 479-496, 2016. URL: https://doi.org/10.1145/2940716.2940753.
  21. Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. Detecting high log-densities: an O(n^1/4) approximation for densest k-subgraph. In STOC, pages 201-210, 2010. URL: https://doi.org/10.1145/1806689.1806719.
  22. Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and Yuan Zhou. Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In SODA, pages 388-405, 2012. URL: https://doi.org/10.1137/1.9781611973099.34.
  23. Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Parameterized intractability of even set and shortest vector problem from Gap-ETH. In ICALP, pages 17:1-17:15, 2018. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.17.
  24. Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah. Graph pattern polynomials. In FSTTCS, pages 18:1-18:13, 2018. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2018.18.
  25. Mark Braverman, Young Kun-Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness for densest-k-subgraph with perfect completeness. In SODA, pages 1326-1341, 2017. Google Scholar
  26. Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best Nash equilibrium in n^o(log n)-time breaks the exponential time hypothesis. In SODA, pages 970-982, 2015. URL: https://doi.org/10.1137/1.9781611973730.66.
  27. Matthew Brennan and Guy Bresler. Optimal average-case reductions to sparse PCA: from weak assumptions to strong hardness. In COLT, pages 469-470, 2019. URL: http://proceedings.mlr.press/v99/brennan19b.html.
  28. Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm. Statistical query algorithms and low-degree tests are almost equivalent. arXiv preprint, 2020. URL: http://arxiv.org/abs/2009.06107.
  29. Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. In COLT, pages 48-166, 2018. URL: http://proceedings.mlr.press/v75/brennan18a.html.
  30. Liming Cai and David W. Juedes. On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci., 67(4):789-807, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00074-6.
  31. Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability: Clique, dominating set, and more. In FOCS, pages 743-754, 2017. URL: https://doi.org/10.1109/FOCS.2017.74.
  32. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX, pages 84-95, 2000. URL: https://doi.org/10.1007/3-540-44436-X_10.
  33. Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and Ming Li. Approximation algorithms for directed steiner problems. J. Algorithms, 33(1):73-91, 1999. URL: https://doi.org/10.1006/jagm.1999.1042.
  34. Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J. Karloff. Improved approximation algorithms for label cover problems. Algorithmica, 61(1):190-206, 2011. URL: https://doi.org/10.1007/s00453-010-9464-3.
  35. Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems in undirected graphs and the directed steiner network problem. ACM Trans. Algorithms, 7(2):18:1-18:17, 2011. URL: https://doi.org/10.1145/1921659.1921664.
  36. Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation algorithms for bidirected steiner network problems. In ESA, pages 20:1-20:16, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.20.
  37. Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The densest k-subhypergraph problem. SIAM J. Discret. Math., 32(2):1458-1477, 2018. URL: https://doi.org/10.1137/16M1096402.
  38. Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating spanners and directed steiner forest: Upper and lower bounds. In SODA, pages 534-553, 2017. URL: https://doi.org/10.1137/1.9781611974782.34.
  39. Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via dense subgraphs. In FOCS, pages 758-767, 2012. URL: https://doi.org/10.1109/FOCS.2012.61.
  40. Eden Chlamtác, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approximations for small set bipartite vertex expansion. In SODA, pages 881-899, 2017. URL: https://doi.org/10.1137/1.9781611974782.56.
  41. Eden Chlamtác and Pasin Manurangsi. Sherali-adams integrality gaps matching the log-density threshold. In APPROX, pages 10:1-10:19, 2018. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.10.
  42. Eden Chlamtác, Pasin Manurangsi, Dana Moshkovitz, and Aravindan Vijayaraghavan. Approximation algorithms for label cover and the log-density threshold. In SODA, pages 900-919, 2017. URL: https://doi.org/10.1137/1.9781611974782.57.
  43. Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small subgraphs. In STOC, pages 210-223, 2017. URL: https://doi.org/10.1145/3055399.3055502.
  44. Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness of the vertex-cover number counts. In FOCS, pages 130-139, 2014. URL: https://doi.org/10.1109/FOCS.2014.22.
  45. Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Michal Pilipczuk, Marcin Pilipczuk, and Saket Saurabh. Randomized contractions meet lean decompositions. CoRR, abs/1810.06864, 2018. URL: http://arxiv.org/abs/1810.06864.
  46. Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique cover are probably optimal. SIAM J. Comput., 45(1):67-83, 2016. URL: https://doi.org/10.1137/130947076.
  47. Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding even cycles faster via capped k-walks. In STOC, pages 112-120, 2017. URL: https://doi.org/10.1145/3055399.3055459.
  48. Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern detection: hardness for all induced patterns and faster non-induced cycles. In STOC, pages 1167-1178, 2019. URL: https://doi.org/10.1145/3313276.3316329.
  49. Amit Daniely. Complexity theoretic limitations on learning halfspaces. In STOC, pages 105-117, 2016. URL: https://doi.org/10.1145/2897518.2897520.
  50. Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning DNF’s. In COLT, pages 815-830, 2016. URL: http://proceedings.mlr.press/v49/daniely16.html.
  51. Michael Dinitz, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithm for steiner k-forest with nearly uniform weights. ACM Trans. Algorithms, 13(3):40:1-40:16, 2017. URL: https://doi.org/10.1145/3077581.
  52. Irit Dinur and Pasin Manurangsi. ETH-hardness of approximating 2-CSPs and directed steiner network. In ITCS, pages 36:1-36:20, 2018. URL: https://doi.org/10.4230/LIPIcs.ITCS.2018.36.
  53. Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In STOC, pages 750-759, 1999. URL: https://doi.org/10.1145/301250.301447.
  54. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109-131, 1995. URL: https://doi.org/10.1016/0304-3975(94)00097-3.
  55. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013. Google Scholar
  56. Paul Erdős and Alfréd Rényi. Asymmetric graphs. Acta Mathematica Academiae Scientiarum Hungarica, 14(3-4):295-315, 1963. Google Scholar
  57. Uriel Feige. Relations between average case complexity and approximation complexity. In STOC, pages 534-543, 2002. URL: https://doi.org/10.1145/509907.509985.
  58. Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410-421, 2001. URL: https://doi.org/10.1007/s004530010050.
  59. Uriel Feige and Robert Krauthgamer. The probable value of the lovász-schrijver relaxations for maximum independent set. SIAM J. Comput., 32(2):345-370, 2003. URL: https://doi.org/10.1137/S009753970240118X.
  60. Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Technical report, Weizmann Institute of Science, Rehovot, Israel, 1997. Google Scholar
  61. Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for directed steiner forest. J. Comput. Syst. Sci., 78(1):279-292, 2012. URL: https://doi.org/10.1016/j.jcss.2011.05.009.
  62. Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying Xiao. Statistical algorithms and a lower bound for detecting planted cliques. J. ACM, 64(2):8:1-8:37, 2017. URL: https://doi.org/10.1145/3046674.
  63. Chao Gao, Zongming Ma, and Harrison H Zhou. Sparse CCA: adaptive estimation and computational barriers. The Annals of Statistics, 2017. Google Scholar
  64. Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized complexity of arc-weighted directed steiner problems. SIAM J. Discret. Math., 25(2):583-599, 2011. URL: https://doi.org/10.1137/100794560.
  65. Anupam Gupta, Mohammad Taghi Hajiaghayi, Viswanath Nagarajan, and R. Ravi. Dial a ride from k-forest. ACM Trans. Algorithms, 6(2):41:1-41:21, 2010. URL: https://doi.org/10.1145/1721837.1721857.
  66. Bruce E. Hajek, Yihong Wu, and Jiaming Xu. Computational lower bounds for community detection on random graphs. In COLT, pages 899-928, 2015. URL: http://proceedings.mlr.press/v40/Hajek15.html.
  67. Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema. In SODA, pages 631-640, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109626.
  68. Elad Hazan and Robert Krauthgamer. How hard is it to approximate the best Nash equilibrium? SIAM J. Comput., 40(1):79-91, 2011. URL: https://doi.org/10.1137/090766991.
  69. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  70. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  71. Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms, 3(4):347-360, 1992. URL: https://doi.org/10.1002/rsa.3240030402.
  72. David S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 8(5):438-448, September 1987. Google Scholar
  73. Richard Karp. Probabilistic analysis of some combinatorial search problems. Algorithms and Complexity: New Directions and Recent Results, 1976. Google Scholar
  74. Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on the Complexity of Computer Computations, pages 85-103, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  75. Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput., 36(4):1025-1071, 2006. URL: https://doi.org/10.1137/S0097539705447037.
  76. Guy Kortsarz and David Peleg. On choosing a dense subgraph (extended abstract). In 34th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993, pages 692-701, 1993. Google Scholar
  77. Tamás Kővári, Vera T Sós, and Pál Turán. On a problem of Zarankiewicz. In Colloquium Mathematicum, volume 3, pages 50-57, 1954. Google Scholar
  78. Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small subgraphs via equations. SIAM J. Discret. Math., 27(2):892-909, 2013. URL: https://doi.org/10.1137/110859798.
  79. James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite programming relaxations. In STOC, pages 567-576, 2015. URL: https://doi.org/10.1145/2746539.2746599.
  80. Bingkai Lin. The parameterized complexity of k-biclique. In SODA, pages 605-615, 2015. Google Scholar
  81. Andrea Lincoln and Nikhil Vyas. Algorithms and lower bounds for cycles and walks: Small space and sparse graphs. In ITCS, pages 11:1-11:17, 2020. URL: https://doi.org/10.4230/LIPIcs.ITCS.2020.11.
  82. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential time hypothesis. Bull. EATCS, 105:41-72, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/92.
  83. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized complexity and approximability of directed odd cycle transversal. CoRR, abs/1704.04249, 2017. URL: http://arxiv.org/abs/1704.04249.
  84. Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. In STOC, pages 954-961, 2017. URL: https://doi.org/10.1145/3055399.3055412.
  85. Pasin Manurangsi. Inapproximability of maximum edge biclique, maximum balanced biclique and minimum k-cut from the small set expansion hypothesis. In ICALP, pages 79:1-79:14, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.79.
  86. Pasin Manurangsi and Dana Moshkovitz. Approximating dense max 2-CSPs. In APPROX, pages 396-415, 2015. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.396.
  87. Pasin Manurangsi and Aviad Rubinstein. Inapproximability of VC dimension and Littlestone’s dimension. In COLT, pages 1432-1460, 2017. URL: http://proceedings.mlr.press/v65/manurangsi17a.html.
  88. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824-827, 2002. Google Scholar
  89. Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 26:415-419, 1985. Google Scholar
  90. Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. In STOC, pages 755-764, 2010. URL: https://doi.org/10.1145/1806689.1806792.
  91. Aviad Rubinstein. Settling the complexity of computing approximate two-player Nash equilibria. In FOCS, pages 258-265, 2016. URL: https://doi.org/10.1109/FOCS.2016.35.
  92. Aviad Rubinstein. Detecting communities is hard (and counting them is even harder). In ITCS, pages 42:1-42:13, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.42.
  93. Danny Segev and Gil Segev. Approximate k-steiner forests via the lagrangian relaxation technique with internal preprocessing. Algorithmica, 56(4):529-549, 2010. URL: https://doi.org/10.1007/s00453-008-9189-8.
  94. Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In WWW, pages 1307-1318, 2013. URL: https://doi.org/10.1145/2488388.2488502.
  95. Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity, 2018. ICM survey. Google Scholar
  96. Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted subgraphs. SIAM J. Comput., 42(3):831-854, 2013. URL: https://doi.org/10.1137/09076619X.
  97. Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix multiplication and dynamic programming. In SODA, pages 254-260, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982828.
  98. David Zuckerman. On unapproximable versions of NP-complete problems. SIAM Journal on Computing, 25(6):1293-1304, 1996. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail