LIPIcs.ITCS.2021.11.pdf
- Filesize: 0.61 MB
- 20 pages
In this paper, we study the quantum identity testing problem, i.e., testing whether two given quantum states are identical, and quantum independence testing problem, i.e., testing whether a given multipartite quantum state is in tensor product form. For the quantum identity testing problem of 𝒟(ℂ^d) system, we provide a deterministic measurement scheme that uses 𝒪(d²/ε²) copies via independent measurements with d being the dimension of the state and ε being the additive error. For the independence testing problem 𝒟(ℂ^d₁⊗ℂ^{d₂}⊗⋯⊗ℂ^{d_m}) system, we show that the sample complexity is Θ̃((Π_{i = 1}^m d_i)/ε²) via collective measurements, and 𝒪((Π_{i = 1}^m d_i²)/ε²) via independent measurements. If randomized choice of independent measurements are allowed, the sample complexity is Θ(d^{3/2}/ε²) for the quantum identity testing problem, and Θ̃((Π_{i = 1}^m d_i^{3/2})/ε²) for the quantum independence testing problem.
Feedback for Dagstuhl Publishing