A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the SAT problem and related problems within the polynomial-time hierarchy. For example, for the SAT problem, the state-of-the-art is that the problem cannot be solved by random-access machines in n^c time and n^o(1) space simultaneously for c < 2cos(π/7) ≈ 1.801. We extend this lower bound approach to the quantum and randomized domains. Combining Grover’s algorithm with components from SAT time-space lower bounds, we show that there are problems verifiable in O(n) time with quantum Merlin-Arthur protocols that cannot be solved in n^c time and n^o(1) space simultaneously for c < (3+√3)/2 ≈ 2.366, a super-quadratic time lower bound. This result and the prior work on SAT can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in O(n) time with (classical) Merlin-Arthur protocols that cannot be solved in n^c randomized time and O(log n) space simultaneously for c < 1.465, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to c < 1.5.
@InProceedings{mudigonda_et_al:LIPIcs.ITCS.2021.50, author = {Mudigonda, Abhijit S. and Williams, R. Ryan}, title = {{Time-Space Lower Bounds for Simulating Proof Systems with Quantum and Randomized Verifiers}}, booktitle = {12th Innovations in Theoretical Computer Science Conference (ITCS 2021)}, pages = {50:1--50:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-177-1}, ISSN = {1868-8969}, year = {2021}, volume = {185}, editor = {Lee, James R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.50}, URN = {urn:nbn:de:0030-drops-135897}, doi = {10.4230/LIPIcs.ITCS.2021.50}, annote = {Keywords: Time-space tradeoffs, lower bounds, QMA} }
Feedback for Dagstuhl Publishing