LIPIcs.ICDT.2021.21.pdf
- Filesize: 0.76 MB
- 22 pages
Edit distance similarity search, also called approximate pattern matching, is a fundamental problem with widespread database applications. The goal of the problem is to preprocess n strings of length d, to quickly answer queries q of the form: if there is a database string within edit distance r of q, return a database string within edit distance cr of q. Previous approaches to this problem either rely on very large (superconstant) approximation ratios c, or very small search radii r. Outside of a narrow parameter range, these solutions are not competitive with trivially searching through all n strings. In this work we give a simple and easy-to-implement hash function that can quickly answer queries for a wide range of parameters. Specifically, our strategy can answer queries in time Õ(d3^rn^{1/c}). The best known practical results require c ≫ r to achieve any correctness guarantee; meanwhile, the best known theoretical results are very involved and difficult to implement, and require query time that can be loosely bounded below by 24^r. Our results significantly broaden the range of parameters for which there exist nontrivial theoretical bounds, while retaining the practicality of a locality-sensitive hash function.
Feedback for Dagstuhl Publishing