Modeling of Nanoindentation in Ni-Graphene Nanocomposites: A Molecular Dynamics Sensitivity Study

Authors Vardan Hoviki Vardanyan, Herbert M. Urbassek



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.12.pdf
  • Filesize: 2.64 MB
  • 13 pages

Document Identifiers

Author Details

Vardan Hoviki Vardanyan
  • Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
Herbert M. Urbassek
  • Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany

Acknowledgements

Simulations were performed at the High Performance Cluster Elwetritsch (RHRK, TU Kaiserslautern, Germany).

Cite As Get BibTex

Vardan Hoviki Vardanyan and Herbert M. Urbassek. Modeling of Nanoindentation in Ni-Graphene Nanocomposites: A Molecular Dynamics Sensitivity Study. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 12:1-12:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/OASIcs.iPMVM.2020.12

Abstract

Using molecular dynamics simulation, we perform nanoindentation simulations on a Ni-graphene model system, in which a graphene flake coats the grain boundary of a Ni bi-crystal. Material strengthening or weakening by inclusion of graphene is discussed with the help of the force needed to indent to a specified depth. By varying the depth of the graphene flake with respect to the indentation depth we identify the distance up to which graphene influences the indentation behavior. In addition, we vary the details of the modeling of the graphene flake in the matrix metal and determine their influence on the performance of the nanocomposite. Our results indicate that the modeling results are robust against variations in the modeling of the graphene flake.

Subject Classification

ACM Subject Classification
  • Applied computing → Physical sciences and engineering
Keywords
  • molecular dynamics
  • nickel-graphene composites
  • dislocations
  • nanoindentation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. W. Armstrong, W. L. Elban, and S. M. Walley. Elastic, plastic, cracking aspects of the hardness of materials. Int. J. Mod. Phys. B, 27:1330004, 2013. Google Scholar
  2. Shu-Wei Chang, Arun K. Nair, and Markus J. Buehler. Nanoindentation study of size effects in nickel-graphene nanocomposites. Philosophical Magazine Letters, 93(4):196-203, 2013. URL: https://doi.org/10.1080/09500839.2012.759293.
  3. Qing Feng, Xiaoyan Song, Hongxian Xie, Haibin Wang, Xuemei Liu, and Fuxing Yin. Deformation and plastic coordination in wc-co composite-molecular dynamics simulation of nanoindentation. Materials & Design, 120:193-203, 2017. URL: https://doi.org/10.1016/j.matdes.2017.02.010.
  4. A. C. Fischer-Cripps. Nanoindentation. Springer, New York, 2 edition, 2004. Google Scholar
  5. Qiang Guo, Katsuyoshi Kondoh, and Seung Min Han. Nanocarbon-reinforced metal-matrix composites for structural applications. MRS Bulletin, 44(1):40-45, 2019. URL: https://doi.org/10.1557/mrs.2018.321.
  6. Xin He, Qingshun Bai, and Rongqi Shen. Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts. Carbon, 130:672-679, 2018. iron. URL: https://doi.org/10.1016/j.carbon.2018.01.023.
  7. Shi-Ping Huang, D. S. Mainardi, and P. B. Balbuena. Structure and dynamics of graphite-supported bimetallic nanoclusters. Surface Science, 545:163-179, 2003. URL: https://doi.org/10.1016/j.susc.2003.08.050.
  8. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B, 58:11085-11088, 1998. Google Scholar
  9. P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J. Kelly. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B, 79:195425, May 2009. URL: https://doi.org/10.1103/PhysRevB.79.195425.
  10. Youbin Kim, Jinsup Lee, Min Sun Yeom, Jae Won Shin, Hyungjun Kim, Yi Cui, Jeffrey W. Kysar, James Hone, Yousung Jung, Seokwoo Jeon, and Seung Min Han. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun., 4:2114, 2013. URL: https://doi.org/10.1038/ncomms3114.
  11. Da Kuang, Liye Xu, Lei Liu, Wenbin Hu, and Yating Wu. Graphene-nickel composites. Applied Surface Science, 273:484-490, 2013. URL: https://doi.org/10.1016/j.apsusc.2013.02.066.
  12. XiaoYi Liu, FengChao Wang, WenQiang Wang, and HengAn Wu. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon, 107:680-688, 2016. URL: https://doi.org/10.1016/j.carbon.2016.06.071.
  13. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B, 59:3393, 1999. Google Scholar
  14. A Misra, J P Hirth, and R G Hoagland. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater., 53(18):4817-4824, 2005. URL: https://doi.org/10.1016/j.actamat.2005.06.025.
  15. S. E. Muller and A. K. Nair. Dislocation nucleation in nickel-graphene nanocomposites under mode i loading. JOM, 68:1-6, 2016. URL: https://doi.org/10.1007/s11837-016-1941-y.
  16. Scott E. Muller, Raghuram R. Santhapuram, and Arun K. Nair. Failure mechanisms in pre-cracked ni-graphene nanocomposites. Computational Materials Science, 152:341-350, 2018. URL: https://doi.org/10.1016/j.commatsci.2018.06.013.
  17. David L. Olmsted, Stephen M. Foiles, and Elizabeth A. Holm. Survey of computed grain boundary properties in face-centered cubic metals: I. grain boundary energy. Acta Materialia, 57(13):3694-3703, 2009. URL: https://doi.org/10.1016/j.actamat.2009.04.007.
  18. St. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117:1-19, 1995. http://lammps.sandia.gov/. Google Scholar
  19. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. PrudquotesingleHomme, and L. C. Brinson. Functionalized graphene sheets for polymer nanocomposites. Nature nanotechnology, 3(6):327, May 2008. URL: https://doi.org/10.1038/nnano.2008.96.
  20. Carlos J. Ruestes, Iyad Alabd Alhafez, and Herbert M. Urbassek. Atomistic studies of nanoindentation - a review of recent advances. Crystals, 7:293, 2017. URL: https://doi.org/10.3390/cryst7100293.
  21. Carlos J Ruestes, Eduardo M Bringa, Yu Gao, and Herbert M Urbassek. Molecular dynamics modeling of nanoindentation. In Atul Tiwari and Sridhar Natarajan, editors, Applied Nanoindentation in Advanced Materials, chapter 14, pages 313-345. Wiley, Chichester, UK, 2017. URL: https://doi.org/10.1002/9781119084501.ch14.
  22. Fei Shuang and Katerina E. Aifantis. Relating the strength of graphene/metal composites to the graphene orientation and position. Scripta Materialia, 181:70-75, 2020. URL: https://doi.org/10.1016/j.scriptamat.2020.02.014.
  23. S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 112:6472-6486, 2000. Google Scholar
  24. Francesca Tavazza, Thomas P Senftle, Chenyu Zou, Chandler A Becker, and Adri C. T. van Duin. Molecular dynamics investigation of the effects of tip-substrate interactions during nanoindentation. J. Phys. Chem. C, 119:13580-13589, 2015. Google Scholar
  25. Vardan Hoviki Vardanyan and Herbert M. Urbassek. Dislocation interactions during nanoindentation of nickel-graphene nanocomposites. Computational Materials Science, 170:109158, 2019. URL: https://doi.org/10.1016/j.commatsci.2019.109158.
  26. Vardan Hoviki Vardanyan and Herbert M. Urbassek. Strength of graphene-coated ni bi-crystals: A molecular dynamics nano-indentation study. Materials, 13(7):1683, 2020. URL: https://doi.org/10.3390/ma13071683.
  27. Shayuan Weng, Huiming Ning, Tao Fu, Ning Hu, Yinbo Zhao, Cheng Huang, and Xianghe Peng. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/cu composites under compression. Scientific Reports, 8(1):3089, 2018. Google Scholar
  28. Ding-Bang Xiong, Mu Cao, Qiang Guo, Zhanqiu Tan, Genlian Fan, Zhiqiang Li, and Di Zhang. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite. ACS Nano, 9(7):6934-6943, 2015. URL: https://doi.org/10.1021/acsnano.5b01067.
  29. Yuping Yan, Shangru Zhou, and Sheng Liu. Atomistic simulation on nanomechanical response of indented graphene/nickel system. Computational Materials Science, 130:16-20, 2017. URL: https://doi.org/10.1016/j.commatsci.2016.12.028.
  30. Zhenyu Yang, Dandan Wang, Zixing Lu, and Wenjun Hu. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/ni nanocomposites. Applied Physics Letters, 109(19):191909, 2016. URL: https://doi.org/10.1063/1.4967793.
  31. Fatemeh Yazdandoost, Ayoub Yari Boroujeni, and Reza Mirzaeifar. Nanocrystalline nickel-graphene nanoplatelets composite: Superior mechanical properties and mechanics of properties enhancement at the atomistic level. Phys. Rev. Materials, 1:076001, December 2017. URL: https://doi.org/10.1103/PhysRevMaterials.1.076001.
  32. Peng Zhang, Lulu Ma, Feifei Fan, Zhi Zeng, Cheng Peng, Phillip E. Loya, Zheng Liu, Yongji Gong, Jiangnan Zhang, Xingxiang Zhang, Pulickel M. Ajayan, Ting Zhu, and Jun Lou. Fracture toughness of graphene. Nature Communications, 5:3782 EP-, April 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail