Physical Modeling of Full-Field Time-Domain Optical Coherence Tomography

Authors Andrej Keksel , Georgis Bulun, Matthias Eifler , Anis Idrizovic, Jörg Seewig



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.14.pdf
  • Filesize: 2.95 MB
  • 22 pages

Document Identifiers

Author Details

Andrej Keksel
  • Institute for Measurement and Sensor-Technology, Technische Universität Kaiserslautern, Germany
Georgis Bulun
  • Institute for Measurement and Sensor-Technology, Technische Universität Kaiserslautern, Germany
Matthias Eifler
  • Institute for Measurement and Sensor-Technology, Technische Universität Kaiserslautern, Germany
Anis Idrizovic
  • The Institute of Optics, University of Rochester, NY, USA
Jörg Seewig
  • Institute for Measurement and Sensor-Technology, Technische Universität Kaiserslautern, Germany

Cite AsGet BibTex

Andrej Keksel, Georgis Bulun, Matthias Eifler, Anis Idrizovic, and Jörg Seewig. Physical Modeling of Full-Field Time-Domain Optical Coherence Tomography. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/OASIcs.iPMVM.2020.14

Abstract

In this paper, a physical model of full-field time-domain optical coherence tomography (FF-TD OCT), which focuses the requirements of measuring inner textures of flexible layered samples in industrial applications, is developed and validated by reference measurements. Both the operating principle and the overall design of a FF-TD OCT correspond to that of classical white light interferometry (WLI), commonly used for the measurement of areal micro-topographies. The presented model accounts for optical and geometrical properties of the system, multiple scattering of light in turbid media and interference of partially coherent light. Applying this model, virtual measurements are used to exemplarily investigate the extent to which the principles of classical WLI can be directly transferred to obtain layer thickness measurements by simulating the use of a simple low-cost WLI system as OCT. Results indicate that a currently existing instrument setup can only be used as OCT to a very limited extent but not in general due to its initial design as a WLI.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Modeling methodologies
Keywords
  • Optical coherence tomography
  • full-field time-domain OCT
  • virtual measuring
  • optical measurement technology
  • physical modeling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Max Born, Emil Wolf, and Avadh Behari Bhatia. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Cambridge Univ. Press, Cambridge, 7th ed., 11th reprinting edition, 2016. Google Scholar
  2. Georgis Bulun, Matthias Eifler, Julian Hering, Georg von Freymann, and Jörg Seewig. Performance specification of areal surface texture instruments exemplified by a self-built wli. In Michael B. North Morris, Katherine Creath, and Rosario Porras-Aguilar, editors, Interferometry XX, page 15. SPIE, 2020. URL: https://doi.org/10.1117/12.2567666.
  3. William M. Cornette and Joseph G. Shanks. Physically reasonable analytic expression for the single-scattering phase function. Applied optics, 31(16):3152-3160, 1992. URL: https://doi.org/10.1364/AO.31.003152.
  4. Peter de Groot. Principles of interference microscopy for the measurement of surface topography. Advances in Optics and Photonics, 7(1):1, 2015. URL: https://doi.org/10.1364/AOP.7.000001.
  5. Peter de Groot and Xavier Colonna de Lega. Signal modeling for low-coherence height-scanning interference microscopy. Applied optics, 43(25):4821-4830, 2004. URL: https://doi.org/10.1364/AO.43.004821.
  6. Wolfgang Drexler. Optical coherence tomography: Technology and applications /Wolfgang Drexler ... (eds.). Biological and Medical Physics, Biomedical Engineering. Springer, Berlin and Heidelberg, 2008. Google Scholar
  7. Arnaud Dubois, editor. Handbook of full-field optical coherence microscopy: Technology and applications. Pan Stanford Publishing, Singapore, 2016. Google Scholar
  8. Joy P. Dunkers, Richard S. Parnas, Carl G. Zimba, Richard C. Peterson, Kathleen M. Flynn, James G. Fujimoto, and Brett E. Bouma. Optical coherence tomography of glass reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 30(2):139-145, 1999. URL: https://doi.org/10.1016/S1359-835X(98)00084-0.
  9. Joseph W. Goodman. Introduction to fourier optics. W.H. Freeman Macmillan learning, New York, fourth edition edition, 2017. Google Scholar
  10. Shengling Huang, Xin Wang, Yifan Chen, Jie Xu, Tian Tang, and Baozhong Mu. Modeling and quantitative analysis of x-ray transmission and backscatter imaging aimed at security inspection. Optics express, 27(2):337-349, 2019. URL: https://doi.org/10.1364/OE.27.000337.
  11. ISO 25178-70. Geometrical product specifications (gps) - surface texture: Areal - - part 70: Material measures (iso 25178-70:2014), 2014. Google Scholar
  12. Steven L. Jacques. Modeling tissue optics using monte carlo modeling: A tutorial. In Steven L. Jacques, William P. Roach, and Robert J. Thomas, editors, Optical Interactions with Tissue and Cells XIX, SPIE Proceedings, page 68540T. SPIE, 2008. URL: https://doi.org/10.1117/12.776997.
  13. Paul Jansz, Steven Richardson, Graham Wild, and Steven Hinckley. Modeling of low coherence interferometry using broadband multi-gaussian light sources. Photonic Sensors, 2(3):247-258, 2012. URL: https://doi.org/10.1007/s13320-012-0069-0.
  14. Paul Jansz, Graham Wild, Steven Richardson, and Steven Hinckley. Simulation of optical delay lines for optical coherence tomography. In 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology, pages 1400-1402. IEEE, 2011. URL: https://doi.org/10.1109/IQEC-CLEO.2011.6194128.
  15. Boris Karamata, Markus Laubscher, Marcel Leutenegger, Stéphane Bourquin, Theo Lasser, and Patrick Lambelet. Multiple scattering in optical coherence tomography. i. investigation and modeling. Journal of the Optical Society of America. A, Optics, image science, and vision, 22(7):1369-1379, 2005. URL: https://doi.org/10.1364/JOSAA.22.001369.
  16. Boris Karamata, Marcel Leutenegger, Markus Laubscher, Stéphane Bourquin, Theo Lasser, and Patrick Lambelet. Multiple scattering in optical coherence tomography. ii. experimental and theoretical investigation of cross talk in wide-field optical coherence tomography. Journal of the Optical Society of America. A, Optics, image science, and vision, 22(7):1380-1388, 2005. URL: https://doi.org/10.1364/JOSAA.22.001380.
  17. Andrej Keksel, Matthias Eifler, and Jörg Seewig. Modeling of topography measuring instrument transfer functions by time series models. Measurement Science and Technology, 29(9):095012, 2018. URL: https://doi.org/10.1088/1361-6501/aad467.
  18. Andrej Keksel, Anna-Pia Lohfink, Matthias Eifler, Christoph Garth, and Jörg Seewig. Virtual topography measurement with transfer functions derived by fitted time series models. Measurement Science and Technology, 31(5):055008, 2020. URL: https://doi.org/10.1088/1361-6501/ab5131.
  19. Richard Leach. Optical Measurement of Surface Topography. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-12012-1.
  20. Siavash Malektaji, Ivan T. Lima, and Sherif S. Sherif. Monte carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions. Journal of biomedical optics, 19(4):046001, 2014. URL: https://doi.org/10.1117/1.JBO.19.4.046001.
  21. Adrian Gh. Podoleanu. Optical coherence tomography. Journal of microscopy, 247(3):209-219, 2012. URL: https://doi.org/10.1111/j.1365-2818.2012.03619.x.
  22. Tuukka Prykäri, Jakub Czajkowski, Erkki Alarousu, and Risto Myllylä. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Optical Review, 17(3):218-222, 2010. URL: https://doi.org/10.1007/s10043-010-0039-y.
  23. Fernando Puente León and Jürgen Beyerer. Oberflächencharakterisierung durch morphologische filterung (surface characterization by morphological filtering). tm - Technisches Messen, 72(12/2005):602, 2005. URL: https://doi.org/10.1524/teme.2005.72.12.663.
  24. Maik Rahlves and Jörg Seewig. Optisches Messen technischer Oberflächen: Messprinzipien und Begriffe. Beuth Pocket. Beuth Verlag GmbH, 1. edition, 2009. Google Scholar
  25. Yogesh Rao, N. P. Sarwade, and Roshan Makkar. Modeling and simulation of optical coherence tomography on virtual oct. Procedia Computer Science, 45:644-650, 2015. URL: https://doi.org/10.1016/j.procs.2015.03.121.
  26. Stefan Roth and Achim Stahl. Optik. Springer Berlin Heidelberg, Berlin, Heidelberg, 2019. URL: https://doi.org/10.1007/978-3-662-59337-0.
  27. Joanna Schmit. White-light interference 3d microscopes. In Kevin Harding, editor, Handbook of Optical Dimensional Metrology, pages 395-418. CRC Press, 2016. Google Scholar
  28. Robert Schmitt, Friedel Koerfer, and Stephan Bichmann. Modellierung optischer messprozesse (modelling of optical measurement methods). tm - Technisches Messen, 75(4):6152, 2008. URL: https://doi.org/10.1524/teme.2008.0832.
  29. Robert Schmitt, Friedel Koerfer, Oliver Sawodny, Jan Zimmermann, Rolf Krüger-Sehm, Min Xu, Thorsten Dziomba, Ludger Koenders, Gert Goch, Andreas Tausendfreund, Stefan Patzelt, Sven Simon, Lars Rockstroh, Carsten Bellon, Andreas Staude, Peter Woias, Frank Goldschmidtböing, and Martin Rabold. Virtuelle messgeräte: Definition und stand der entwicklung (virtual measuring instruments: Definition and development status). tm - Technisches Messen, 75(5/2008):357, 2008. URL: https://doi.org/10.1524/teme.2008.0872.
  30. Heinrich Schwenke. Abschätzung von Meßunsicherheiten durch Simulation an Beispielen aus der Fertigungsmeßtechnik: Zugl.: Chemnitz, Techn. Univ., Diss, volume 36 of PTB-Bericht F, Fertigungsmeßtechnik. Bremerhaven Wirtschaftsverl. NW Verl. für neue Wissenschaft, Bremerhaven, 1999. Google Scholar
  31. Jörg Seewig, Thomas Böttner, and Daniel Broschart. Uncertainty of height information in coherence scanning interferometry. In Peter H. Lehmann, Wolfgang Osten, and Kay Gastinger, editors, Optical Measurement Systems for Industrial Inspection VII, SPIE Proceedings, page 80820V. SPIE, 2011. URL: https://doi.org/10.1117/12.889796.
  32. Jörg Seewig, Matthias Eifler, Frank Schneider, Benjamin Kirsch, and Jan C. Aurich. A model-based approach for the calibration and traceability of the angle resolved scattering light sensor. Surface Topography: Metrology and Properties, 4(2):024010, 2016. URL: https://doi.org/10.1088/2051-672X/4/2/024010.
  33. Muhammad Faizan Shirazi, Kibeom Park, Ruchire Eranga Wijesinghe, Hyosang Jeong, Sangyeob Han, Pilun Kim, Mansik Jeon, and Jeehyun Kim. Fast industrial inspection of optical thin film using optical coherence tomography. Sensors (Basel, Switzerland), 16(10), 2016. URL: https://doi.org/10.3390/s16101598.
  34. Lars Thrane. Optical coherence tomography: Modeling and applications, volume 1217 (EN) of Risø-R. Risø National Laboratory and Available from: Risø National Laboratory, Information Service Department, Roskilde, 2001. Google Scholar
  35. Lars Thrane, Thomas M. Jørgensen, Mikkel Jørgensen, and Frederik C. Krebs. Application of optical coherence tomography (oct) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells. Solar Energy Materials and Solar Cells, 97:181-185, 2012. URL: https://doi.org/10.1016/j.solmat.2011.10.004.
  36. Gerd R. Tillack, Christina Nockemann, and Carsten Bellon. X-ray modeling for industrial applications. NDT & E International, 33(7):481-488, 2000. URL: https://doi.org/10.1016/S0963-8695(00)00019-0.
  37. François M. Torner. Entwicklung virtueller, optischer Sensoren zur Charakterisierung geometrischer Oberflächen. Dissertation, Universität Kaiserslautern, 2018. Google Scholar
  38. François M. Torner, Jayanti Das, Gerhard Stelzer, Barbara Linke, and Jörg Seewig. Fundamental analysis of the usability of an angle-resolved scattered light sensor for monitoring vibratory finishing processes based on ray tracing simulations. Applied Mechanics and Materials, 869:115-127, 2017. URL: https://doi.org/10.4028/www.scientific.net/AMM.869.115.
  39. François M. Torner, Gerhard Stelzer, Lukas Anslinger, and Jörg Seewig. Description and evaluation of a simplified model to simulate the optical behavior of an angle-resolved scattered light sensor. Journal of Computing and Information Science in Engineering, 17(2):31, 2017. URL: https://doi.org/10.1115/1.4034386.
  40. Andreas Tycho, Thomas M. Jørgensen, Harold T. Yura, and Peter E. Andersen. Derivation of a monte carlo method for modeling heterodyne detection in optical coherence tomography systems. Applied optics, 41(31):6676-6691, 2002. URL: https://doi.org/10.1364/AO.41.006676.
  41. Junxin Wang, Changgang Xu, Annica M. Nilsson, Daniel L. A. Fernandes, and Gunnar A. Niklasson. A novel phase function describing light scattering of layers containing colloidal nanospheres. Nanoscale, 11(15):7404-7413, 2019. URL: https://doi.org/10.1039/C9NR01707K.
  42. Lihong Wang, Steven L. Jacques, and Liqiong Zheng. Mcml - monte carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 47(2):131-146, 1995. URL: https://doi.org/10.1016/0169-2607(95)01640-F.
  43. Ashley J. Welch and Martin J.C. van Gemert. Optical-Thermal Response of Laser-Irradiated Tissue. Springer Netherlands, Dordrecht, 2011. URL: https://doi.org/10.1007/978-90-481-8831-4.
  44. Faming Xu, Haridas E. Pudavar, Prasad N. Prasad, and David L. Dickensheets. Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings. Optics letters, 24(24):1808-1810, 1999. URL: https://doi.org/10.1364/OL.24.001808.
  45. Min Xu, Thorsten Dziomba, and Ludger Koenders. Modelling and simulating scanning force microscopes for estimating measurement uncertainty: A virtual scanning force microscope. Measurement Science and Technology, 22(9):094004, 2011. URL: https://doi.org/10.1088/0957-0233/22/9/094004.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail