Molecular Simulation Study on the Influence of the Scratching Velocity on Nanoscopic Contact Processes

Authors Sebastian Schmitt, Simon Stephan, Benjamin Kirsch, Jan C. Aurich, Eberhard Kerscher, Herbert M. Urbassek, Hans Hasse



PDF
Thumbnail PDF

File

OASIcs.iPMVM.2020.17.pdf
  • Filesize: 4.73 MB
  • 16 pages

Document Identifiers

Author Details

Sebastian Schmitt
  • Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Germany
Simon Stephan
  • Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Germany
Benjamin Kirsch
  • Institute for Manufacturing Technology and Production Systems (FBK), TU Kaiserslautern, Germany
Jan C. Aurich
  • Institute for Manufacturing Technology and Production Systems (FBK), TU Kaiserslautern, Germany
Eberhard Kerscher
  • Materials Testing (AWP), TU Kaiserslautern, Germany
Herbert M. Urbassek
  • Physics Department and Research Center OPTIMAS, TU Kaiserslautern, Germany
Hans Hasse
  • Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Germany

Acknowledgements

The present work was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular Engineering (BZS). The simulations were carried out on the Regional University Computing Center Kaiserslautern (RHRK) under the grant TUK-MTD, the High Performance Computing Center Stuttgart (HLRS) under the grant MMHBF2 as well as the Leibniz Supercomputing Centre (LRZ) under the grant (AMSEL)^2 (pn56mo).

Cite As Get BibTex

Sebastian Schmitt, Simon Stephan, Benjamin Kirsch, Jan C. Aurich, Eberhard Kerscher, Herbert M. Urbassek, and Hans Hasse. Molecular Simulation Study on the Influence of the Scratching Velocity on Nanoscopic Contact Processes. In 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020). Open Access Series in Informatics (OASIcs), Volume 89, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021) https://doi.org/10.4230/OASIcs.iPMVM.2020.17

Abstract

The influence of the scratching velocity on mechanical and thermal properties of a nanoscopic contact process was studied by molecular dynamics simulations. Simulations with different scratching velocities were conducted in dry and lubricated systems. The contact process consisted of a lateral scratching of a spherical indenter on a planar substrate. All molecular interactions were described by the Lennard-Jones truncated and shifted potential. The forces on the indenter, the coefficient of friction and the work done by the indenter as well as the power applied on the indenter were sampled. Furthermore, an analysis of thermal properties was conducted: The change of the energy of the substrate, the indenter and the fluid was evaluated and the local temperature field was determined. The forces, the coefficient of friction and the work done by the indenter show practically no influence of the scratching velocity. The work done by the indenter was found to be the same for all velocities. As a consequence, the power supplied to the system depends linearly on the scratching velocity, which affects the temperature of the contact zone. As expected, the presence of a lubricant reduces the temperature of the substrate in the vicinity of the contact.

Subject Classification

ACM Subject Classification
  • Applied computing → Physical sciences and engineering
Keywords
  • Nanotribology
  • Friction
  • Scratching
  • Lubrication
  • Lennard-Jones Potential

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. T. Al Motasem, J. Bergström, A. Gaard, P. Krakhmalev, and L. J. Holleboom. Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics. Tribology Letters, 65(3):101, 2017. URL: https://doi.org/10.1007/s11249-017-0876-y.
  2. I. Alabd Alhafez, A. Brodyanski, M. Kopnarski, and H. M. Urbassek. Influence of tip geometry on nanoscratching. Tribology Letters, 65(1):26, 2017. URL: https://doi.org/10.1007/s11249-016-0804-6.
  3. J. Alcalá, R. Dalmau, O. Franke, M. Biener, J. Biener, and A. Hodge. Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Physical Review Letters, 109(7):075502, 2012. URL: https://doi.org/10.1103/PhysRevLett.109.075502.
  4. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University Press, Oxford, United Kingdom, second edition edition, 2017. Google Scholar
  5. S. Becker, H. M. Urbassek, M. Horsch, and H. Hasse. Contact angle of sessile drops in Lennard-Jones systems. Langmuir, 30(45):13606-13614, 2014. URL: https://doi.org/10.1021/la503974z.
  6. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684-3690, 1984. URL: https://doi.org/10.1063/1.448118.
  7. E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H.-W. Hoffmeister, F. Klocke, J. Peters, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert, and M. Wittmann. Advances in modeling and simulation of grinding processes. CIRP Annals, 55(2):667-696, 2006. URL: https://doi.org/10.1016/j.cirp.2006.10.003.
  8. E. Brinksmeier, C. Heinzel, and M. Wittmann. Friction, cooling and lubrication in grinding. CIRP Annals, 48(2):581-598, 1999. URL: https://doi.org/10.1016/S0007-8506(07)63236-3.
  9. E. Brinksmeier, D. Meyer, A. G. Huesmann-Cordes, and C. Herrmann. Metalworking fluids-mechanisms and performance. CIRP Annals, 64(2):605-628, 2015. URL: https://doi.org/10.1016/j.cirp.2015.05.003.
  10. M. Bugel and G. Galliero. Thermal conductivity of the Lennard-Jones fluid: An empirical correlation. Chemical Physics, 352(1-3):249-257, 2008. URL: https://doi.org/10.1016/j.chemphys.2008.06.013.
  11. Y. H. Chen, H. Han, F. Z. Fang, and X. T. Hu. MD simulation of nanometric cutting of copper with and without water lubrication. Science China Technological Sciences, 57(6):1154-1159, 2014. URL: https://doi.org/10.1007/s11431-014-5519-z.
  12. F. Diewald, M. P. Lautenschlaeger, S. Stephan, K. Langenbach, C. Kuhn, S. Seckler, H.-J. Bungartz, H. Hasse, and R. Müller. Molecular dynamics and phase field simulations of droplets on surfaces with wettability gradient. Computer Methods in Applied Mechanics and Engineering, 361:112773, 2020. URL: https://doi.org/10.1016/j.cma.2019.112773.
  13. Y. Dong, Q. Li, and A. Martini. Molecular dynamics simulation of atomic friction: A review and guide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31(3):030801, 2013. URL: https://doi.org/10.1116/1.4794357.
  14. H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29(4):551-559, 1983. URL: https://doi.org/10.1109/TIT.1983.1056714.
  15. J. P. Ewen, D. M. Heyes, and D. Dini. Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction, 6(4):349-386, 2018. URL: https://doi.org/10.1007/s40544-018-0207-9.
  16. Y. Gao, A. Brodyanski, M. Kopnarski, and H. M. Urbassek. Nanoscratching of iron: A molecular dynamics study of the influence of surface orientation and scratching direction. Computational Materials Science, 103:77-89, 2015. URL: https://doi.org/10.1016/j.commatsci.2015.03.011.
  17. Y. Gao, C. J. Ruestes, D. R. Tramontina, and H. M. Urbassek. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids, 75:58-75, 2015. URL: https://doi.org/10.1016/j.jmps.2014.11.005.
  18. Y. Gao and H. M. Urbassek. Evolution of plasticity in nanometric cutting of Fe single crystals. Applied Surface Science, 317:6-10, 2014. URL: https://doi.org/10.1016/j.apsusc.2014.08.020.
  19. Y. B. Guo, Y. C. Liang, M. J. Chen, Q. S. Bai, and L. H. Lu. Molecular dynamics simulations of thermal effects in nanometric cutting process. Science China Technological Sciences, 53(3):870-874, 2010. URL: https://doi.org/10.1007/s11431-009-0243-9.
  20. T. Halicioglu and G. M. Pound. Calculation of potential energy parameters from crystalline state properties. Physica Status Solidi (a), 30(2):619-623, 1975. URL: https://doi.org/10.1002/pssa.2210300223.
  21. M. Heier, S. Stephan, J. Liu, W. G. Chapman, H. Hasse, and K. Langenbach. Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 σ based on perturbation theory and its applications to interfacial thermodynamics. Molecular Physics, 116(15-16):2083-2094, 2018. URL: https://doi.org/10.1080/00268976.2018.1447153.
  22. C. Heinzel, B. Kirsch, D. Meyer, and J. Webster. Interactions of grinding tool and supplied fluid. CIRP Annals, 69(1):624-645, 2020. URL: https://doi.org/10.1016/j.cirp.2020.05.001.
  23. Y.-L. Huang, T. Merker, M. Heilig, H. Hasse, and J. Vrabec. Molecular modeling and simulation of vapor-liquid equilibria of ethylene oxide, ethylene glycol, and water as well as their binary mixtures. Industrial & Engineering Chemistry Research, 51(21):7428-7440, 2012. URL: https://doi.org/10.1021/ie300248z.
  24. B. Kirsch, S. Basten, H. Hasse, and J. C. Aurich. Sub-zero cooling: A novel strategy for high performance cutting. CIRP Annals, 67(1):95-98, 2018. URL: https://doi.org/10.1016/j.cirp.2018.04.060.
  25. F. Klocke. Fertigungsverfahren 2: Zerspanung mit geometrisch unbestimmter Schneide. VDI-Buch. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017. URL: https://doi.org/10.1007/978-3-662-53310-9.
  26. M. P. Lautenschlaeger and H. Hasse. Transport properties of the Lennard-Jones truncated and shifted fluid from non-equilibrium molecular dynamics simulations. Fluid Phase Equilibria, 482:38-47, 2019. URL: https://doi.org/10.1016/j.fluid.2018.10.019.
  27. M. P. Lautenschlaeger, S. Stephan, M. T. Horsch, B. Kirsch, J. C. Aurich, and H. Hasse. Effects of lubrication on friction and heat transfer in machining processes on the nanoscale: A molecular dynamics approach. Procedia CIRP, 67:296-301, 2018. URL: https://doi.org/10.1016/j.procir.2017.12.216.
  28. M. P. Lautenschlaeger, S. Stephan, H. M. Urbassek, B. Kirsch, J. C. Aurich, M. T. Horsch, and H. Hasse. Effects of lubrication on the friction in nanometric machining processes: A molecular dynamics approach. Applied Mechanics and Materials, 869:85-93, 2017. URL: https://doi.org/10.4028/www.scientific.net/AMM.869.85.
  29. Y. Liu, B. Li, and L. Kong. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide. Computational Materials Science, 148:76-86, 2018. URL: https://doi.org/10.1016/j.commatsci.2018.02.038.
  30. B. Magyar and B. Sauer. Methods for the simulation of the pressure, stress, and temperature distribution in the contact of fractal generated rough surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(4):489-502, 2017. URL: https://doi.org/10.1177/1350650115593962.
  31. B. Meng, D. Yuan, and S. Xu. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation. International Journal of Mechanical Sciences, 151:724-732, 2019. URL: https://doi.org/10.1016/j.ijmecsci.2018.12.022.
  32. A. Noreyan and J. G. Amar. Molecular dynamics simulations of nanoscratching of 3C SiC. Wear, 265(7):956-962, 2008. URL: https://doi.org/10.1016/j.wear.2008.02.020.
  33. S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1-19, 1995. URL: https://doi.org/10.1006/jcph.1995.1039.
  34. J. Ren, J. Zhao, Z. Dong, and P. Liu. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication. Applied Surface Science, 346:84-98, 2015. URL: https://doi.org/10.1016/j.apsusc.2015.03.177.
  35. R. Rentsch and I. Inasaki. Effects of fluids on the surface generation in material removal processes -molecular dynamics simulation-. CIRP Annals, 55(1):601-604, 2006. URL: https://doi.org/10.1016/S0007-8506(07)60492-2.
  36. C. J. Ruestes, E. M. Bringa, Y. Gao, and H. M. Urbassek. Molecular dynamics modeling of nanoindentation. In Applied nanoindentation in advanced materials, pages 313-345. John Wiley & Sons, Ltd, 2017. URL: https://doi.org/10.1002/9781119084501.ch14.
  37. A. J. Schultz and D. A. Kofke. Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low-temperature fluid phases. The Journal of Chemical Physics, 149(20):204508, 2018. URL: https://doi.org/10.1063/1.5053714.
  38. S. Stephan, M. Dyga, H. M. Urbassek, and H. Hasse. The influence of lubrication and the solid-fluid interaction on thermodynamic properties in a nanoscopic scratching process. Langmuir, 35(51):16948-16960, 2019. URL: https://doi.org/10.1021/acs.langmuir.9b01033.
  39. S. Stephan, M. T. Horsch, J. Vrabec, and H. Hasse. MolMod - an open access database of force fields for molecular simulations of fluids. Molecular Simulation, 45(10):806-814, 2019. URL: https://doi.org/10.1080/08927022.2019.1601191.
  40. S. Stephan, M. P. Lautenschlaeger, I. A. Alhafez, M. T. Horsch, H. M. Urbassek, and H. Hasse. Molecular dynamics simulation study of mechanical effects of lubrication on a nanoscale contact process. Tribology Letters, 66(4):126, 2018. URL: https://doi.org/10.1007/s11249-018-1076-0.
  41. S. Stephan, M. Thol, J. Vrabec, and H. Hasse. Thermophysical properties of the Lennard-Jones fluid: Database and data assessment. Journal of Chemical Information and Modeling, 59(10):4248-4265, 2019. URL: https://doi.org/10.1021/acs.jcim.9b00620.
  42. I. Szlufarska, M. Chandross, and R. W. Carpick. Recent advances in single-asperity nanotribology. Journal of Physics D: Applied Physics, 41(12):123001, 2008. URL: https://doi.org/10.1088/0022-3727/41/12/123001.
  43. A. Travesset. Phase diagram of power law and Lennard-Jones systems: Crystal phases. The Journal of Chemical Physics, 141(16):164501, 2014. URL: https://doi.org/10.1063/1.4898371.
  44. K. V. Tretiakov and S. Scandolo. Thermal conductivity of solid argon from molecular dynamics simulations. The Journal of Chemical Physics, 120(8):3765-3769, 2004. URL: https://doi.org/10.1063/1.1642611.
  45. A. I. Vakis, V. A. Yastrebov, J. Scheibert, L. Nicola, D. Dini, C. Minfray, A. Almqvist, M. Paggi, S. Lee, G. Limbert, J. F. Molinari, G. Anciaux, R. Aghababaei, S. Echeverri Restrepo, A. Papangelo, A. Cammarata, P. Nicolini, C. Putignano, G. Carbone, S. Stupkiewicz, J. Lengiewicz, G. Costagliola, F. Bosia, R. Guarino, N. M. Pugno, M. H. Müser, and M. Ciavarella. Modeling and simulation in tribology across scales: An overview. Tribology International, 125:169-199, 2018. URL: https://doi.org/10.1016/j.triboint.2018.02.005.
  46. J. Vrabec, G. K. Kedia, G. Fuchs, and H. Hasse. Comprehensive study of the vapour-liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties. Molecular Physics, 104(9):1509-1527, 2006. URL: https://doi.org/10.1080/00268970600556774.
  47. P. Wang, J. Yu, and Q. Zhang. Nano-cutting mechanical properties and microstructure evolution mechanism of amorphous/single crystal alloy interface. Computational Materials Science, 184:109915, 2020. URL: https://doi.org/10.1016/j.commatsci.2020.109915.
  48. J. Zhang, T. Sun, Y. Yan, and Y. Liang. Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process. Materials Science and Engineering: A, 505(1):65-69, 2009. URL: https://doi.org/10.1016/j.msea.2008.10.049.
  49. Z. Zhang, I. Alabd Alhafez, and H. M. Urbassek. Scratching an Al/Si interface: Molecular dynamics study of a composite material. Tribology Letters, 66(3):86, 2018. URL: https://doi.org/10.1007/s11249-018-1038-6.
  50. P.-Z. Zhu, C. Qiu, F.-Z. Fang, D.-D. Yuan, and X.-C. Shen. Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Applied Surface Science, 317:432-442, 2014. URL: https://doi.org/10.1016/j.apsusc.2014.08.031.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail