Tree edit distance is a well-studied measure of dissimilarity between rooted trees with node labels. It can be computed in O(n³) time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007], and fine-grained hardness results suggest that the weighted version of this problem cannot be solved in truly subcubic time unless the APSP conjecture is false [Bringmann, Gawrychowski, Mozes, and Weimann, SODA 2018]. We consider the unweighted version of tree edit distance, where every insertion, deletion, or relabeling operation has unit cost. Given a parameter k as an upper bound on the distance, the previous fastest algorithm for this problem runs in O(nk³) time [Touzet, CPM 2005], which improves upon the cubic-time algorithm for k≪ n^{2/3}. In this paper, we give a faster algorithm taking O(nk² log n) time, improving both of the previous results for almost the full range of log n ≪ k≪ n/√{log n}.
@InProceedings{akmal_et_al:LIPIcs.ICALP.2021.12, author = {Akmal, Shyan and Jin, Ce}, title = {{Faster Algorithms for Bounded Tree Edit Distance}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {12:1--12:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.12}, URN = {urn:nbn:de:0030-drops-140819}, doi = {10.4230/LIPIcs.ICALP.2021.12}, annote = {Keywords: tree edit distance, edit distance, dynamic programming} }
Feedback for Dagstuhl Publishing