LIPIcs.APPROX-RANDOM.2021.31.pdf
- Filesize: 0.76 MB
- 25 pages
The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for convergence, many other natural questions can be asked about algorithms; for instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?". These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.
Feedback for Dagstuhl Publishing