LIPIcs.APPROX-RANDOM.2021.59.pdf
- Filesize: 0.7 MB
- 17 pages
In an r-choice Achlioptas process, random edges are generated r at a time, and an online strategy is used to select one of them for inclusion in a graph. We investigate the problem of whether such a selection strategy can shift the k-colorability transition; that is, the number of edges at which the graph goes from being k-colorable to non-k-colorable. We show that, for k ≥ 9, two choices suffice to delay the k-colorability threshold, and that for every k ≥ 2, six choices suffice.
Feedback for Dagstuhl Publishing