LIPIcs.DISC.2021.40.pdf
- Filesize: 0.85 MB
- 17 pages
We consider the leader election problem in the population protocol model. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e., the knowledge of the exact size of a network) and rich computational resource (i.e., the number of states). Loose-stabilization is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not necessarily forever. The main contribution of this paper is giving a time-optimal loosely-stabilizing leader election protocol. The proposed protocol with design parameter τ ≥ 1 attains O(τ log n) parallel convergence time and Ω(n^τ) parallel holding time (i.e., the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require Ω(τ log n) parallel time.
Feedback for Dagstuhl Publishing