OASIcs.FMBC.2021.3.pdf
- Filesize: 0.64 MB
- 8 pages
Using the DeepSEA system for smart contract proofs, this paper investigates how to use the Coq theorem prover to enforce that smart contracts follow the Checks-Effects-Interactions Pattern. This pattern is widely understood to mitigate the risks associated with reentrancy. The infamous "The DAO" exploit is an example of the risks of not following the Checks-Effects-Interactions Pattern. It resulted in the loss of over 50 million USD and involved reentrancy - the exploit used would not have been possible if the Checks-Effects-Interactions Pattern had been followed. Remix IDE, for example, already has a tool to check that the Checks-Effects-Interactions Pattern has been followed as part of the Solidity Static Analysis module which is available as a plugin. However, aside from simply replicating the Remix IDE feature, implementing a Checks-Effects-Interactions Pattern checker in the proof assistant Coq also allows us to use the proofs, which are generated in the process, in other proofs related to the smart contract. As an example of this, we will demonstrate an idea for how the modelling of Ether transfer can be simplified by using automatically generated proofs of the property that each smart contract function will call the Ether transfer method at most once (excluding any calls related to invoking other smart contracts). This property is a consequence of following a strict version of the Checks-Effects-Interactions Pattern as given in this paper.
Feedback for Dagstuhl Publishing