LIPIcs.ISAAC.2021.38.pdf
- Filesize: 0.72 MB
- 17 pages
We present a 5/3-approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. A 7/4-approximation algorithm for the same problem was presented recently, see Cheriyan, et al., "The matching augmentation problem: a 7/4-approximation algorithm," Math. Program., 182(1):315-354, 2020. Our improvement is based on new algorithmic techniques, and some of these may lead to advances on related problems.
Feedback for Dagstuhl Publishing