LIPIcs.FSTTCS.2021.6.pdf
- Filesize: 0.88 MB
- 22 pages
This paper studies online makespan minimization in the secretary model. Jobs, specified by their processing times, are presented in a uniformly random order. The input size n is known in advance. An online algorithm has to non-preemptively assign each job permanently and irrevocably to one of m parallel and identical machines such that the expected time it takes to process them all, the makespan, is minimized. We give two deterministic algorithms. First, a straightforward adaptation of the semi-online strategy Light Load [Albers and Hellwig, 2012] provides a very simple approach retaining its competitive ratio of 1.75. A new and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in expectation but, in fact, for all but a very tiny fraction of job orders. Classically, online makespan minimization only considers the worst-case order. Here, no competitive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case orders are quite rare and pessimistic for many applications. We complement our results by providing first lower bounds. A competitive ratio obtained on nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both deterministic and randomized algorithms in the general model.
Feedback for Dagstuhl Publishing