LIPIcs.ITCS.2022.26.pdf
- Filesize: 0.72 MB
- 18 pages
A pair of sources X, Y over {0,1}ⁿ are k-indistinguishable if their projections to any k coordinates are identically distributed. Can some AC^0 function distinguish between two such sources when k is big, say k = n^{0.1}? Braverman’s theorem (Commun. ACM 2011) implies a negative answer when X is uniform, whereas Bogdanov et al. (Crypto 2016) observe that this is not the case in general. We initiate a systematic study of this question for natural classes of low-complexity sources, including ones that arise in cryptographic applications, obtaining positive results, negative results, and barriers. In particular: - There exist Ω(√n)-indistinguishable X, Y, samplable by degree-O(log n) polynomial maps (over F₂) and by poly(n)-size decision trees, that are Ω(1)-distinguishable by OR. - There exists a function f such that all f(d, ε)-indistinguishable X, Y that are samplable by degree-d polynomial maps are ε-indistinguishable by OR for all sufficiently large n. Moreover, f(1, ε) = ⌈log(1/ε)⌉ + 1 and f(2, ε) = O(log^{10}(1/ε)). - Extending (weaker versions of) the above negative results to AC^0 distinguishers would require settling a conjecture of Servedio and Viola (ECCC 2012). Concretely, if every pair of n^{0.9}-indistinguishable X, Y that are samplable by linear maps is ε-indistinguishable by AC^0 circuits, then the binary inner product function can have at most an ε-correlation with AC^0 ◦ ⊕ circuits. Finally, we motivate the question and our results by presenting applications of positive results to low-complexity secret sharing and applications of negative results to leakage-resilient cryptography.
Feedback for Dagstuhl Publishing