LIPIcs.OPODIS.2021.13.pdf
- Filesize: 0.7 MB
- 19 pages
In this paper, we focus on graph class identification problems in the population protocol model. A graph class identification problem aims to decide whether a given communication graph is in the desired class (e.g. whether the given communication graph is a ring graph). Angluin et al. proposed graph class identification protocols with directed graphs and designated initial states under global fairness [Angluin et al., DCOSS2005]. We consider graph class identification problems for undirected graphs on various assumptions such as initial states of agents, fairness of the execution, and initial knowledge of agents. In particular, we focus on lines, rings, k-regular graphs, stars, trees, and bipartite graphs. With designated initial states, we propose graph class identification protocols for k-regular graphs and trees under global fairness, and propose a graph class identification protocol for stars under weak fairness. Moreover, we show that, even if agents know the number of agents n, there is no graph class identification protocol for lines, rings, k-regular graphs, trees, or bipartite graphs under weak fairness, and no graph class identification for lines, rings, k-regular graphs, stars, trees, or bipartite graphs with arbitrary initial states.
Feedback for Dagstuhl Publishing