Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs

Authors Patricia Bouyer , Mickael Randour, Pierre Vandenhove



PDF
Thumbnail PDF

File

LIPIcs.STACS.2022.16.pdf
  • Filesize: 0.77 MB
  • 16 pages

Document Identifiers

Author Details

Patricia Bouyer
  • Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France
Mickael Randour
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
Pierre Vandenhove
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
  • Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

Cite As Get BibTex

Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing Omega-Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.STACS.2022.16

Abstract

We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of ω-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is ω-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be ω-regular. This provides a game-theoretic characterization of ω-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which ω-regularity depends on the value of some parameters.

Subject Classification

ACM Subject Classification
  • Theory of computation → Formal languages and automata theory
Keywords
  • two-player games on graphs
  • infinite arenas
  • finite-memory determinacy
  • optimal strategies
  • ω-regular languages

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dana Angluin and Dana Fisman. Regular ω-languages with an informative right congruence. Inf. Comput., 278:104598, 2021. URL: https://doi.org/10.1016/j.ic.2020.104598.
  2. Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. Comparator automata in quantitative verification. CoRR, abs/1812.06569, 2018. URL: http://arxiv.org/abs/1812.06569.
  3. Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. Exploring the boundary of half-positionality. Ann. Math. Artif. Intell., 62(1-2):55-77, 2011. URL: https://doi.org/10.1007/s10472-011-9250-1.
  4. Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph games and reactive synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 921-962. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-10575-8_27.
  5. Udi Boker, Thomas A. Henzinger, and Jan Otop. The target discounted-sum problem. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 750-761. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/LICS.2015.74.
  6. Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Games where you can play optimally with arena-independent finite memory. In Igor Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 24:1-24:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2020.24.
  7. Patricia Bouyer, Stéphane Le Roux, and Nathan Thomasset. Finite-memory strategies in two-player infinite games. CoRR, abs/2107.09945, 2021. URL: http://arxiv.org/abs/2107.09945.
  8. Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2021.26.
  9. Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity through finite-memory determinacy of games on infinite graphs. CoRR, abs/2110.01276, 2021. URL: http://arxiv.org/abs/2110.01276.
  10. Tomás Brázdil, Václav Brozek, and Kousha Etessami. One-counter stochastic games. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages 108-119. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108.
  11. Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic memory requirements of Muller conditions. CoRR, abs/2105.12009, 2021. URL: http://arxiv.org/abs/2105.12009.
  12. Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal transformations of games and automata using Muller conditions. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 123:1-123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.123.
  13. Krishnendu Chatterjee and Laurent Doyen. Perfect-information stochastic games with generalized mean-payoff objectives. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 247-256. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934513.
  14. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and closure properties for quantitative languages. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 199-208. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/LICS.2009.16.
  15. Krishnendu Chatterjee and Nathanaël Fijalkow. Infinite-state games with finitary conditions. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 181-196. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. URL: https://doi.org/10.4230/LIPIcs.CSL.2013.181.
  16. Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe. In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 379-390. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2014.379.
  17. Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled games. Theor. Comput. Sci., 352(1-3):190-196, 2006. URL: https://doi.org/10.1016/j.tcs.2005.10.046.
  18. Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed to win infinite games? In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997, pages 99-110. IEEE Computer Society, 1997. URL: https://doi.org/10.1109/LICS.1997.614939.
  19. Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. Int. Journal of Game Theory, 8(2):109-113, 1979. URL: https://doi.org/10.1007/BF01768705.
  20. Hugo Gimbert. Parity and exploration games on infinite graphs. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 56-70. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30124-0_8.
  21. Hugo Gimbert and Edon Kelmendi. Submixing and shift-invariant stochastic games. CoRR, abs/1401.6575, 2014. URL: http://arxiv.org/abs/1401.6575.
  22. Hugo Gimbert and Wieslaw Zielonka. When can you play positionally? In Jirí Fiala, Václav Koubek, and Jan Kratochvíl, editors, Mathematical Foundations of Computer Science 2004, 29th International Symposium, MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, volume 3153 of Lecture Notes in Computer Science, pages 686-697. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-28629-5_53.
  23. Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency Theory, 16th International Conference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428-442. Springer, 2005. URL: https://doi.org/10.1007/11539452_33.
  24. Hugo Gimbert and Wieslaw Zielonka. Pure and stationary optimal strategies in perfect-information stochastic games with global preferences. Unpublished, 2009. URL: https://hal.archives-ouvertes.fr/hal-00438359.
  25. Erich Grädel and Igor Walukiewicz. Positional determinacy of games with infinitely many priorities. Log. Methods Comput. Sci., 2(4), 2006. URL: https://doi.org/10.2168/LMCS-2(4:6)2006.
  26. Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, Patrick Totzke, and Dominik Wojtczak. How to play in infinite MDPs (invited talk). In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 3:1-3:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.3.
  27. Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for tree automata. Ann. Pure Appl. Log., 69(2-3):243-268, 1994. URL: https://doi.org/10.1016/0168-0072(94)90086-8.
  28. Eryk Kopczyński. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer Science, pages 336-347. Springer, 2006. URL: https://doi.org/10.1007/11787006_29.
  29. Eryk Kopczyński. Omega-regular half-positional winning conditions. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer Science, pages 41-53. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-74915-8_7.
  30. Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw University, 2008. Google Scholar
  31. Alexander Kozachinskiy. One-to-two-player lifting for mildly growing memory. CoRR, abs/2104.13888, 2021. URL: http://arxiv.org/abs/2104.13888.
  32. Stéphane Le Roux. Time-aware uniformization of winning strategies. In Marcella Anselmo, Gianluca Della Vedova, Florin Manea, and Arno Pauly, editors, Beyond the Horizon of Computability - 16th Conference on Computability in Europe, CiE 2020, Fisciano, Italy, June 29 - July 3, 2020, Proceedings, volume 12098 of Lecture Notes in Computer Science, pages 193-204. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-51466-2_17.
  33. Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player games. Inf. Comput., 261(Part):676-694, 2018. URL: https://doi.org/10.1016/j.ic.2018.02.024.
  34. Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 38:1-38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38.
  35. Oded Maler and Ludwig Staiger. On syntactic congruences for omega-languages. Theor. Comput. Sci., 183(1):93-112, 1997. URL: https://doi.org/10.1016/S0304-3975(96)00312-X.
  36. Andrzej Wlodzimierz Mostowski. Regular expressions for infinite trees and a standard form of automata. In Andrzej Skowron, editor, Computation Theory - Fifth Symposium, Zaborów, Poland, December 3-8, 1984, Proceedings, volume 208 of Lecture Notes in Computer Science, pages 157-168. Springer, 1984. URL: https://doi.org/10.1007/3-540-16066-3_15.
  37. A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical Society, 9(4):541-544, 1958. URL: https://doi.org/10.2307/2033204.
  38. Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46-57. IEEE Computer Society, 1977. URL: https://doi.org/10.1109/SFCS.1977.32.
  39. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, 1994. URL: https://doi.org/10.1002/9780470316887.
  40. L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095-1100, 1953. URL: https://doi.org/10.1073/pnas.39.10.1095.
  41. Ludwig Staiger. Finite-state omega-languages. J. Comput. Syst. Sci., 27(3):434-448, 1983. URL: https://doi.org/10.1016/0022-0000(83)90051-X.
  42. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998. URL: https://doi.org/10.1016/S0304-3975(98)00009-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail