LIPIcs.STACS.2022.34.pdf
- Filesize: 2.29 MB
- 14 pages
Given integers k ≥ 2 and a_1,…,a_k ≥ 1, let a: = (a_1,…,a_k) and n: = a_1+⋯+a_k. An a-multiset permutation is a string of length n that contains exactly a_i symbols i for each i = 1,…,k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, i.e., in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a_1 = ⋯ = a_k = 1) can be generated by star transpositions, while combinations (k = 2) can be generated by these operations if and only if they are balanced (a_1 = a_2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Δ(a): = n-2max{a_1,…,a_k} that allows us to distinguish three different regimes for this problem. We show that if Δ(a) < 0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Δ(a) > 0, assuming that they exist for the case Δ(a) = 0. For the case Δ(a) = 0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.
Feedback for Dagstuhl Publishing