Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Bauer, Ulrich; Bjerkevik, Håvard Bakke; Fluhr, Benedikt https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-160221
URL:

; ;

Quasi-Universality of Reeb Graph Distances

pdf-format:


Abstract

We establish bi-Lipschitz bounds certifying quasi-universality (universality up to a constant factor) for various distances between Reeb graphs: the interleaving distance, the functional distortion distance, and the functional contortion distance. The definition of the latter distance is a novel contribution, and for the special case of contour trees we also prove strict universality of this distance. Furthermore, we prove that for the special case of merge trees the functional contortion distance coincides with the interleaving distance, yielding universality of all four distances in this case.

BibTeX - Entry

@InProceedings{bauer_et_al:LIPIcs.SoCG.2022.14,
  author =	{Bauer, Ulrich and Bjerkevik, H\r{a}vard Bakke and Fluhr, Benedikt},
  title =	{{Quasi-Universality of Reeb Graph Distances}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16022},
  URN =		{urn:nbn:de:0030-drops-160221},
  doi =		{10.4230/LIPIcs.SoCG.2022.14},
  annote =	{Keywords: Reeb graphs, contour trees, merge trees, distances, universality, interleaving distance, functional distortion distance, functional contortion distance}
}

Keywords: Reeb graphs, contour trees, merge trees, distances, universality, interleaving distance, functional distortion distance, functional contortion distance
Seminar: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI