LIPIcs.SWAT.2022.29.pdf
- Filesize: 1.44 MB
- 19 pages
Proximity graphs have been studied for several decades, motivated by applications in computational geometry, geography, data mining, and many other fields. However, the computational complexity of classic graph problems on proximity graphs mostly remained open. We study 3-Colorability, Dominating Set, Feedback Vertex Set, Hamiltonian Cycle, and Independent Set on the following classes of proximity graphs: relative neighborhood graphs, Gabriel graphs, and relatively closest graphs. We prove that all of the aforementioned problems remain NP-hard on these graphs, except for 3-Colorability and Hamiltonian Cycle on relatively closest graphs, where the former is trivial and the latter is left open. Moreover, for every NP-hard case we additionally show that no 2^{o(n^{1/4})}-time algorithm exists unless the Exponential-Time Hypothesis (ETH) fails, where n denotes the number of vertices.
Feedback for Dagstuhl Publishing