Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Abboud, Amir; Cohen-Addad, Vincent; Lee, Euiwoong; Manurangsi, Pasin https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-163481
URL:

; ; ;

Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems

pdf-format:


Abstract

We study several questions related to diversifying search results. We give improved approximation algorithms in each of the following problems, together with some lower bounds.
1) We give a polynomial-time approximation scheme (PTAS) for a diversified search ranking problem [Nikhil Bansal et al., 2010] whose objective is to minimizes the discounted cumulative gain. Our PTAS runs in time n^{2^O(log(1/ε)/ε)} ⋅ m^O(1) where n denotes the number of elements in the databases and m denotes the number of constraints. Complementing this result, we show that no PTAS can run in time f(ε) ⋅ (nm)^{2^o(1/ε)} assuming Gap-ETH and therefore our running time is nearly tight. Both our upper and lower bounds answer open questions from [Nikhil Bansal et al., 2010].
2) We next consider the Max-Sum Dispersion problem, whose objective is to select k out of n elements from a database that maximizes the dispersion, which is defined as the sum of the pairwise distances under a given metric. We give a quasipolynomial-time approximation scheme (QPTAS) for the problem which runs in time n^{O_ε(log n)}. This improves upon previously known polynomial-time algorithms with approximate ratios 0.5 [Refael Hassin et al., 1997; Allan Borodin et al., 2017]. Furthermore, we observe that reductions from previous work rule out approximation schemes that run in n^õ_ε(log n) time assuming ETH.
3) Finally, we consider a generalization of Max-Sum Dispersion called Max-Sum Diversification. In addition to the sum of pairwise distance, the objective also includes another function f. For monotone submodular function f, we give a quasipolynomial-time algorithm with approximation ratio arbitrarily close to (1-1/e). This improves upon the best polynomial-time algorithm which has approximation ratio 0.5 [Allan Borodin et al., 2017]. Furthermore, the (1-1/e) factor is also tight as achieving better-than-(1-1/e) approximation is NP-hard [Uriel Feige, 1998].

BibTeX - Entry

@InProceedings{abboud_et_al:LIPIcs.ICALP.2022.7,
  author =	{Abboud, Amir and Cohen-Addad, Vincent and Lee, Euiwoong and Manurangsi, Pasin},
  title =	{{Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16348},
  URN =		{urn:nbn:de:0030-drops-163481},
  doi =		{10.4230/LIPIcs.ICALP.2022.7},
  annote =	{Keywords: Approximation Algorithms, Complexity, Data Mining, Diversification}
}

Keywords: Approximation Algorithms, Complexity, Data Mining, Diversification
Seminar: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI