The SDP Value of Random 2CSPs

Authors Amulya Musipatla, Ryan O'Donnell, Tselil Schramm, Xinyu Wu



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.97.pdf
  • Filesize: 0.84 MB
  • 19 pages

Document Identifiers

Author Details

Amulya Musipatla
  • Carnegie Mellon University, Pittsburgh, PA, USA
Ryan O'Donnell
  • Carnegie Mellon University, Pittsburgh, PA, USA
Tselil Schramm
  • Stanford University, CA, USA
Xinyu Wu
  • Carnegie Mellon University, Pittsburgh, PA, USA

Cite As Get BibTex

Amulya Musipatla, Ryan O'Donnell, Tselil Schramm, and Xinyu Wu. The SDP Value of Random 2CSPs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 97:1-97:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ICALP.2022.97

Abstract

We consider a very wide class of models for sparse random Boolean 2CSPs; equivalently, degree-2 optimization problems over {±1}ⁿ. For each model ℳ, we identify the "high-probability value" s^*_ℳ of the natural SDP relaxation (equivalently, the quantum value). That is, for all ε > 0 we show that the SDP optimum of a random n-variable instance is (when normalized by n) in the range (s^*_ℳ-ε, s^*_ℳ+ε) with high probability. Our class of models includes non-regular CSPs, and ones where the SDP relaxation value is strictly smaller than the spectral relaxation value.

Subject Classification

ACM Subject Classification
  • Theory of computation → Random network models
  • Theory of computation → Approximation algorithms analysis
Keywords
  • Random constraint satisfaction problems

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson and Andris Ambainis. Forrelation: a problem that optimally separates quantum from classical computing. SIAM J. Comput., 47(3):982-1038, 2018. URL: https://doi.org/10.1137/15M1050902.
  2. Afonso S Bandeira, Jess Banks, Dmitriy Kunisky, Christopher Moore, and Alex Wein. Spectral planting and the hardness of refuting cuts, colorability, and communities in random graphs. In Proceedings of the 34th Annual Conference on Learning Theory, pages 410-473. PMLR, 2021. Google Scholar
  3. Jess Banks, Robert Kleinberg, and Cristopher Moore. The lovász theta function for random regular graphs and community detection in the hard regime. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2017. Google Scholar
  4. Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local statistics, semidefinite programming, and community detection. In soda21, pages 1298-1316. SIAM, 2021. Google Scholar
  5. Paolo Barucca. Spectral partitioning in equitable graphs. Physical Review E, 95(6):062310, 2017. Google Scholar
  6. Mohsen Bayati, David Gamarnik, and Prasad Tetali. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. Annals of Probability, 41(6):4080-4115, 2013. Google Scholar
  7. J. Frédéric Bonnans and Alexander Shapiro. Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer-Verlag, New York, 2000. URL: https://doi.org/10.1007/978-1-4612-1394-9.
  8. Ravi Boppana. Eigenvalues and graph bisection: An average-case analysis. In Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, pages 280-285, 1987. Google Scholar
  9. Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its extension to random lifts. Ann. Sci. Éc. Norm. Supér. (4), 53(6):1393-1439, 2020. URL: https://doi.org/10.24033/asens.245.
  10. Charles Bordenave and Benoît Collins. Eigenvalues of random lifts and polynomials of random permutation matrices. Annals of Mathematics, 190(3):811-875, 2019. URL: https://doi.org/10.4007/annals.2019.190.3.3.
  11. John Clauser, Michael Horne, Abner Shimony, and Richard Holt. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15):880-884, 1969. Google Scholar
  12. Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and limits of nonlocal strategies. In Proceedings of the 19th Annual Computational Complexity Conference, pages 236-249. IEEE, 2004. Google Scholar
  13. Endre Csóka, Balázs Gerencsér, Viktor Harangi, and Bálint Virág. Invariant Gaussian processes and independent sets on regular graphs of large girth. Random Structures Algorithms, 47(2):284-303, 2015. URL: https://doi.org/10.1002/rsa.20547.
  14. Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper learning complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 441-448, 2014. Google Scholar
  15. Charles Delorme and Svatopluk Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical Programming, 62:557-574, 1993. Google Scholar
  16. Amir Dembo, Andrea Montanari, Subhabrata Sen, et al. Extremal cuts of sparse random graphs. Annals of Probability, 45(2):1190-1217, 2017. Google Scholar
  17. Yash Deshpande, Andrea Montanari, Ryan O'Donnell, Tselil Schramm, and Subhabrata Sen. The threshold for SDP-refutation of random regular NAE-3SAT. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2305-2321. SIAM, 2019. Google Scholar
  18. Wilm Donath and Alan Hoffman. Lower bounds for the partitioning of graphs. IBM J. Res. Develop., 17:420-425, 1973. URL: https://doi.org/10.1147/rd.175.0420.
  19. Yehonatan Elon. Gaussian waves on the regular tree. Technical report, arXiv, 2009. URL: http://arxiv.org/abs/0907.5065.
  20. Uriel Feige and László Lovász. Two-prover one-round proof systems: Their power and their problems. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 733-744, 1992. Google Scholar
  21. Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Memoirs of the American Mathematical Society, 195(910):viii+100, 2008. Google Scholar
  22. Jorge Garza-Vargas and Archit Kulkarni. Spectra of infinite graphs via freeness with amalgamation. Technical report, arXiv, 2021. URL: http://arxiv.org/abs/1912.10137.
  23. Michel Goemans and David Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115-1145, 1995. URL: https://doi.org/10.1145/227683.227684.
  24. Viktor Harangi and Bálint Virág. Independence ratio and random eigenvectors in transitive graphs. Ann. Probab., 43(5):2810-2840, 2015. URL: https://doi.org/10.1214/14-AOP952.
  25. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation from well-founded assumptions. Technical report, arXiv, 2020. URL: http://arxiv.org/abs/2008.09317.
  26. Franz Lehner. Computing norms of free operators with matrix coefficients. Amer. J. Math., 121(3):453-486, 1999. URL: http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.3lehner.pdf.
  27. Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009. URL: https://doi.org/10.1093/acprof:oso/9780198570837.001.0001.
  28. Sidhanth Mohanty, Ryan O'Donnell, and Pedro Paredes. The SDP value for random two-eigenvalue CSPs. In Christophe Paul and Markus Bläser, editors, Proceedings of the 37th Annual Symposium on Theoretical Aspects of Computer Science, volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1-50:45, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.50.
  29. Andrea Montanari. Optimization of the Sherrington-Kirkpatrick hamiltonian. SIAM Journal on Computing, FOCS19, 2021. Google Scholar
  30. Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs and their application to community detection. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pages 814-827. ACM, New York, 2016. URL: https://doi.org/10.1145/2897518.2897548.
  31. Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition model. Probability Theory and Related Fields, 162(3):431-461, 2015. Google Scholar
  32. MEJ Newman and Travis Martin. Equitable random graphs. Physical Review E, 90(5):052824, 2014. Google Scholar
  33. Ryan O'Donnell and Xinyu Wu. Explicit near-fully X-Ramanujan graphs. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, pages 1045-1056, 2020. Google Scholar
  34. Svatopluk Poljak and Franz Rendl. Nonpolyhedral relaxations of graph-bisection problems. SIAM Journal on Optimization, 5(3):467-487, 1995. Google Scholar
  35. Prasad Raghavendra. Approximating NP-hard problems: efficient algorithms and their limits. PhD thesis, University of Washington, 2009. Google Scholar
  36. Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157-187, 2002. URL: https://doi.org/10.2307/3062153.
  37. Franz Rendl and Henry Wolkowicz. A projection technique for partitioning the nodes of a graph. Ann. Oper. Res., 58:155-179, 1995. Applied mathematical programming and modeling, II (APMOD 93) (Budapest, 1993). URL: https://doi.org/10.1007/BF02032130.
  38. George Styan. Hadamard products and multivariate statistical analysis. Linear Algebra Appl., 6:217-240, 1973. URL: https://doi.org/10.1016/0024-3795(73)90023-2.
  39. Andreas Winter. Coding theorem and strong converse for quantum channels. Institute of Electrical and Electronics Engineers. Transactions on Information Theory, 45(7):2481-2485, 1999. URL: https://doi.org/10.1109/18.796385.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail