The Dimension Spectrum Conjecture for Planar Lines

Author D. M. Stull



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2022.133.pdf
  • Filesize: 0.66 MB
  • 20 pages

Document Identifiers

Author Details

D. M. Stull
  • Department of Computer Science, Northwestern University, Evanston, IL, USA

Cite AsGet BibTex

D. M. Stull. The Dimension Spectrum Conjecture for Planar Lines. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 133:1-133:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ICALP.2022.133

Abstract

Let L_{a,b} be a line in the Euclidean plane with slope a and intercept b. The dimension spectrum sp(L_{a,b}) is the set of all effective dimensions of individual points on L_{a,b}. Jack Lutz, in the early 2000s posed the dimension spectrum conjecture. This conjecture states that, for every line L_{a,b}, the spectrum of L_{a,b} contains a unit interval. In this paper we prove that the dimension spectrum conjecture is true. Specifically, let (a,b) be a slope-intercept pair, and let d = min{dim(a,b), 1}. For every s ∈ [0, 1], we construct a point x such that dim(x, ax + b) = d + s. Thus, we show that sp(L_{a,b}) contains the interval [d, 1+ d].

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • Algorithmic randomness
  • Kolmogorov complexity
  • effective dimension

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Randall Dougherty, Jack Lutz, R Daniel Mauldin, and Jason Teutsch. Translating the Cantor set by a random real. Transactions of the American Mathematical Society, 366(6):3027-3041, 2014. Google Scholar
  2. Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complexity. Springer-Verlag, 2010. Google Scholar
  3. Xiaoyang Gu, Jack H Lutz, Elvira Mayordomo, and Philippe Moser. Dimension spectra of random subfractals of self-similar fractals. Annals of Pure and Applied Logic, 165(11):1707-1726, 2014. Google Scholar
  4. Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer, third edition, 2008. Google Scholar
  5. Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236-1259, 2003. Google Scholar
  6. Jack H. Lutz. The dimensions of individual strings and sequences. Inf. Comput., 187(1):49-79, 2003. Google Scholar
  7. Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional dimension. ACM Trans. Comput. Theory, 10(2):Art. 7, 22, 2018. URL: https://doi.org/10.1145/3201783.
  8. Jack H Lutz and Neil Lutz. Who asked us? how the theory of computing answers questions about analysis. In Complexity and Approximation, pages 48-56. Springer, 2020. Google Scholar
  9. Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM J. Comput., 38(3):1080-1112, 2008. Google Scholar
  10. Neil Lutz. Fractal intersections and products via algorithmic dimension. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), 2017. Google Scholar
  11. Neil Lutz and D. M. Stull. Bounding the dimension of points on a line. In Theory and applications of models of computation, volume 10185 of Lecture Notes in Comput. Sci., pages 425-439. Springer, Cham, 2017. Google Scholar
  12. Neil Lutz and D. M. Stull. Dimension spectra of lines. In Unveiling dynamics and complexity, volume 10307 of Lecture Notes in Comput. Sci., pages 304-314. Springer, Cham, 2017. Google Scholar
  13. Neil Lutz and D. M. Stull. Projection theorems using effective dimension. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), 2018. Google Scholar
  14. Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett., 84(1):1-3, 2002. Google Scholar
  15. Elvira Mayordomo. Effective fractal dimension in algorithmic information theory. In S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, New Computational Paradigms: Changing Conceptions of What is Computable, pages 259-285. Springer New York, 2008. Google Scholar
  16. Andre Nies. Computability and Randomness. Oxford University Press, Inc., New York, NY, USA, 2009. Google Scholar
  17. D. M. Stull. Results on the dimension spectra of planar lines. In 43rd International Symposium on Mathematical Foundations of Computer Science, volume 117 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 79, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018. Google Scholar
  18. Daniel Turetsky. Connectedness properties of dimension level sets. Theor. Comput. Sci., 412(29):3598-3603, 2011. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail