LIPIcs.SEA.2022.1.pdf
- Filesize: 1.91 MB
- 19 pages
The hyperbolic random graph model (HRG) has proven useful in the analysis of scale-free networks, which are ubiquitous in many fields, from social network analysis to biology. However, working with this model is algorithmically and conceptually challenging because of the nature of the distances in the hyperbolic plane. In this paper, we propose a discrete variant of the HRG model (DHRG) where nodes are mapped to the vertices of a triangulation; our algorithms allow us to work with this model in a simple yet efficient way. We present experimental results conducted on networks, both real-world and simulated, to evaluate the practical benefits of DHRG in comparison to the HRG model.
Feedback for Dagstuhl Publishing