Routing in Multimodal Transportation Networks with Non-Scheduled Lines

Authors Darko Drakulic, Christelle Loiodice, Vassilissa Lehoux



PDF
Thumbnail PDF

File

LIPIcs.SEA.2022.6.pdf
  • Filesize: 0.61 MB
  • 15 pages

Document Identifiers

Author Details

Darko Drakulic
  • NAVER LABS Europe, Meylan, France
Christelle Loiodice
  • NAVER LABS Europe, Meylan, France
Vassilissa Lehoux
  • NAVER LABS Europe, Meylan, France

Cite As Get BibTex

Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux. Routing in Multimodal Transportation Networks with Non-Scheduled Lines. In 20th International Symposium on Experimental Algorithms (SEA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 233, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.SEA.2022.6

Abstract

Over the last decades, new mobility offers have emerged to enlarge the coverage and the accessibility of public transportation systems. In many areas, public transit now incorporates on-demand transport lines, that can be activated at user need. In this paper, we propose to integrate lines without predefined schedules but with predefined stop sequences into a state-of-the-art trip planning algorithm for public transit, the Trip-Based Public Transit Routing algorithm [Witt, 2015]. We extend this algorithm to non-scheduled lines and explain how to model other modes of transportation, such as bike sharing, with this approach. The resulting algorithm is exact and optimizes two criteria: the earliest arrival time and the minimal number of transfers. Experiments on two large datasets show the interest of the proposed method over a baseline modelling.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
Keywords
  • Multimodal routing
  • on-demand public transportation
  • bicriteria shortest paths

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Transports montalbanais. Access date: 2021/03/29. URL: https://www.montm.com/transport-a-la-demande-et-pmr/.
  2. Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems. SIAM J. Comput., 30(3):809-837, May 2000. URL: https://doi.org/10.1137/S0097539798337716.
  3. Hannah Bast. Car or Public Transport - Two Worlds. In Susanne Albers, Helmut Alt, and Stefan Näher, editors, Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 355-367. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. URL: https://doi.org/10.1007/978-3-642-03456-5_24.
  4. Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing in very large public transportation networks using transfer patterns. In Proceedings of the 18th Annual European Conference on Algorithms: Part I, ESA'10, pages 290-301, Berlin, Heidelberg, 2010. Springer-Verlag. Google Scholar
  5. Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Transportation Networks. In Kliemann L., Sanders P. (eds) Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19-80. Springer, Cham, 2016. URL: https://doi.org/10.1007/978-3-319-49487-6_2.
  6. Hannah Bast, Matthias Hertel, and Sabine Storandt. Scalable Transfer Patterns. In 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 15-29, January 2016. URL: https://doi.org/10.1137/1.9781611974317.2.
  7. Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms (ESA 2019), volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1-14:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.14.
  8. datahub. Timetables for transit in netherlands. Access date: 2019/07/29. URL: https://old.datahub.io/dataset/gtfs-nl.
  9. Île de France Mobilités. Open data portal. Access date: 2020/05/04. URL: https://data.iledefrance-mobilites.fr/pages/home/.
  10. Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and Exact Public Transit Routing with Restricted Pareto Sets. In Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX), pages 54-65, San Diego, California, USA, 2019. Editor(s): Stephen Kobourov and Henning Meyerhenke. URL: https://doi.org/10.1137/1.9781611975499.5.
  11. Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck. Computing Multimodal Journeys in Practice. In Experimental Algorithms - Proceedings of the 12th International Symposium, SEA 2013, volume 7933 of Lecture Notes in Computer Science, pages 260-271. Springer Berlin Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-38527-8_24.
  12. Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. Public Transit Labeling. In Evripidis Bampis, editor, Experimental Algorithms - Proceedings of the 14th International Symposium (SEA 2015), volume 9125 of Lecture Notes in Computer Science, pages 273-285. Springer International Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-20086-6_21.
  13. Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing. In Society for Industrial and Applied Mathematics, editors, Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX'12), pages 130-140, 2012. URL: https://doi.org/10.1287/trsc.2014.0534.
  14. Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple and Fast Transit Routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors, Experimental Algorithms. International Symposium on Experimental Algorithms, SEA 2013, volume 7933 of Lecture Notes in Computer Science, pages 43-54, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-38527-8_6.
  15. Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multi-Modal Route Planning. In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments (ALENEX’12), pages 118-129. SIAM, 2012. Editors David A. Bader and Petra Mutzel. URL: https://doi.org/10.1137/1.9781611972924.12.
  16. Agglo du Pays de Dreux. Linéad. Access date: 2021/03/29. URL: https://www.linead.fr/8-Transport-a-la-demande.html.
  17. Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In C.C. McGeoch, editor, Experimental Algorithms. 7th Workshop on Experimental Algorithms (WEA 2008), volume 5038 of Lecture Notes in Computer Science, pages 319-333. Springer, Berlin, Heidelberg, 2008. URL: https://doi.org/10.1007/978-3-540-68552-4_24.
  18. Andrew Goldberg and Chris Harrelson. Computing the shortest path: A* search meets graph theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms(SODA’05), pages 156-165. SIAM, 2005. Google Scholar
  19. General transit feed specification. Access date: 2021/03/29. URL: https://gtfs.org/.
  20. Pierre Hansen. Bicriterion Path Problems. In Günter Fandel and Tomas Gal, editors, Multiple Criteria Decision Making Theory and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages 109-127. Springer Berlin Heidelberg, 1980. URL: https://doi.org/10.1007/978-3-642-48782-8_9.
  21. Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo. Efficient Computation of Shortest Paths in Time-Dependent Multi-Modal Networks. ACM Journal of Experimental Algorithmics (JEA), 19, January 2015. URL: https://doi.org/10.1145/2670126.
  22. Vassilissa Lehoux and Darko Drakulic. Mode Personalization in Trip-Based Transit Routing. In Valentina Cacchiani and Alberto Marchetti-Spaccamela, editors, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019), volume 75 of OpenAccess Series in Informatics (OASIcs), pages 13:1-13:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2019.13.
  23. Ross MacDonald. Mobility on demand (mod) sandbox: Vermont agency of transportation (vtrans) flexible trip planner. Technical Report 0150, Federal Transit Administration (FTA) Research, 2020. Google Scholar
  24. Transports publics de Flers Agglo. Némus. Access date: 2021/03/29. URL: https://nemus.flers-agglo.fr/se-deplacer/transport-a-la-demande.
  25. Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models for Timetable Information in Public Transportation Systems. ACM Journal of Experimental Algorithmics (JEA), 12(2.4):1-39, 2008. URL: https://doi.org/10.1145/1227161.1227166.
  26. Andrea Raith, Marie Schmidt, Anita Schöbel, and Lisa Thom. Extensions of labeling algorithms for multi-objective uncertain shortest path problems. Networks, 72(1):84-127, 2018. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21815. URL: https://doi.org/10.1002/net.21815.
  27. Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA. In Simone Faro and Domenico Cantone, editors, 18th International Symposium on Experimental Algorithms (SEA 2020), volume 160 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SEA.2020.16.
  28. Luis Ulloa, Vassilissa Lehoux, and Frédéric Roulland. Trip Planning Within a Multimodal Urban Mobility. IET Intelligent Transport Systems, 12(2):87-92, 2018. URL: https://doi.org/10.1049/iet-its.2016.0265.
  29. GTFS-Flex v2. Flexible public transit services in gtfs. URL: https://github.com/MobilityData/gtfs-flex/blob/master/spec/reference.md.
  30. Sascha Witt. Trip-Based Public Transit Routing. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - Proceedings of the 23rd Annual European Symposium on Algorithms (ESA'15), volume 9294 of Lecture Notes in Computer Science, pages 1025-1036, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. Editors: Nikhil Bansal and Irene Finocchi. URL: https://doi.org/10.1007/978-3-662-48350-3_85.
  31. Sascha Witt. Trip-Based Public Transit Routing Using Condensed Search Trees. In Marc Goerigk and Renato Werneck, editors, Proceedings of the 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 10:1-12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Editors: Marc Goerigk and Renato Werneck. URL: https://doi.org/10.4230/OASIcs.ATMOS.2016.10.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail