LIPIcs.SEA.2022.14.pdf
- Filesize: 0.73 MB
- 16 pages
A classic result of Edmonds states that the maximum number of edge-disjoint arborescences of a directed graph G, rooted at a designated vertex s, equals the minimum cardinality c_G(s) of an s-cut of G. This concept is related to the edge connectivity λ(G) of a strongly connected directed graph G, defined as the minimum number of edges whose deletion leaves a graph that is not strongly connected. In this paper, we address the question of how efficiently we can compute a maximum packing of edge-disjoint arborescences in practice, compared to the time required to determine the edge connectivity of a graph. To that end, we explore the design space of efficient algorithms for packing arborescences of a directed graph in practice and conduct a thorough empirical study to highlight the merits and weaknesses of each technique. In particular, we present an efficient implementation of Gabow’s arborescence packing algorithm and provide a simple but efficient heuristic that significantly improves its running time in practice.
Feedback for Dagstuhl Publishing