@InProceedings{garzon_et_al:LIPIcs.SAT.2022.3,
author = {Garz\'{o}n, Iv\'{a}n and Mesejo, Pablo and Gir\'{a}ldez-Cru, Jes\'{u}s},
title = {{On the Performance of Deep Generative Models of Realistic SAT Instances}},
booktitle = {25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
pages = {3:1--3:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-242-6},
ISSN = {1868-8969},
year = {2022},
volume = {236},
editor = {Meel, Kuldeep S. and Strichman, Ofer},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.3},
URN = {urn:nbn:de:0030-drops-166775},
doi = {10.4230/LIPIcs.SAT.2022.3},
annote = {Keywords: Realistic SAT generators, pseudo-industrial random SAT, deep generative models, deep learning}
}