LIPIcs.SAT.2022.6.pdf
- Filesize: 0.83 MB
- 21 pages
We show that for any connected graph G the size of any regular resolution or OBDD(∧, reordering) refutation of a Tseitin formula based on G is at least 2^Ω(tw(G)), where tw(G) is the treewidth of G. These lower bounds improve upon the previously known bounds and, moreover, they are tight. For both of the proof systems, there are constructive upper bounds that almost match the obtained lower bounds, hence the class of Tseitin formulas is almost automatable for regular resolution and for OBDD(∧, reordering).
Feedback for Dagstuhl Publishing