A graph has arboricity α if its edges can be partitioned into α forests. The dynamic arboricity decomposition problem is to update a partitioning of the graph’s edges into forests, as a graph undergoes insertions and deletions of edges. We present an algorithm for maintaining partitioning into α+1 forests, provided the arboricity of the dynamic graph never exceeds α. Our algorithm has an update time of Õ(n^{3/4}) when α is at most polylogarithmic in n. Similarly, the dynamic bounded out-orientation problem is to orient the edges of the graph such that the out-degree of each vertex is at all times bounded. For this problem, we give an algorithm that orients the edges such that the out-degree is at all times bounded by α+1, with an update time of Õ(n^{5/7}), when α is at most polylogarithmic in n. Here, the choice of α+1 should be viewed in the light of the well-known lower bound by Brodal and Fagerberg which establishes that, for general graphs, maintaining only α out-edges would require linear update time. However, the lower bound by Brodal and Fagerberg is non-planar. In this paper, we give a lower bound showing that even for planar graphs, linear update time is needed in order to maintain an explicit three-out-orientation. For planar graphs, we show that the dynamic four forest decomposition and four-out-orientations, can be updated in Õ(n^{1/2}) time.
@InProceedings{christiansen_et_al:LIPIcs.MFCS.2022.34, author = {Christiansen, Aleksander B. G. and Holm, Jacob and Rotenberg, Eva and Thomassen, Carsten}, title = {{On Dynamic \alpha + 1 Arboricity Decomposition and Out-Orientation}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {34:1--34:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.34}, URN = {urn:nbn:de:0030-drops-168320}, doi = {10.4230/LIPIcs.MFCS.2022.34}, annote = {Keywords: Dynamic graphs, bounded arboricity, data structures} }