LIPIcs.ESA.2022.76.pdf
- Filesize: 0.92 MB
- 13 pages
Cardinality estimation is the task of approximating the number of distinct elements in a large dataset with possibly repeating elements. LogLog and HyperLogLog (c.f. Durand and Flajolet [ESA 2003], Flajolet et al. [Discrete Math Theor. 2007]) are small space sketching schemes for cardinality estimation, which have both strong theoretical guarantees of performance and are highly effective in practice. This makes them a highly popular solution with many implementations in big-data systems (e.g. Algebird, Apache DataSketches, BigQuery, Presto and Redis). However, despite having simple and elegant formulation, both the analysis of LogLog and HyperLogLog are extremely involved - spanning over tens of pages of analytic combinatorics and complex function analysis. We propose a modification to both LogLog and HyperLogLog that replaces discrete geometric distribution with the continuous Gumbel distribution. This leads to a very short, simple and elementary analysis of estimation guarantees, and smoother behavior of the estimator.
Feedback for Dagstuhl Publishing