LIPIcs.APPROX-RANDOM.2022.49.pdf
- Filesize: 0.73 MB
- 19 pages
This paper studies the problem of maximizing a monotone submodular function under an unknown knapsack constraint. A solution to this problem is a policy that decides which item to pack next based on the past packing history. The robustness factor of a policy is the worst case ratio of the solution obtained by following the policy and an optimal solution that knows the knapsack capacity. We develop an algorithm with a robustness factor that is decreasing in the curvature c of the submodular function. For the extreme cases c = 0 corresponding to a modular objective, it matches a previously known and best possible robustness factor of 1/2. For the other extreme case of c = 1 it yields a robustness factor of ≈ 0.35 improving over the best previously known robustness factor of ≈ 0.06.
Feedback for Dagstuhl Publishing