Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings

Authors Frank Kammer , Johannes Meintrup



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2022.62.pdf
  • Filesize: 0.71 MB
  • 15 pages

Document Identifiers

Author Details

Frank Kammer
  • THM, Technische Hochschule Mittelhessen, Giessen, Germany
Johannes Meintrup
  • THM, Technische Hochschule Mittelhessen, Giessen, Germany

Cite As Get BibTex

Frank Kammer and Johannes Meintrup. Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 62:1-62:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ISAAC.2022.62

Abstract

We present a novel space-efficient graph coarsening technique for n-vertex planar graphs G, called cloud partition, which partitions the vertices V(G) into disjoint sets C of size O(log n) such that each C induces a connected subgraph of G. Using this partition 𝒫 we construct a so-called structure-maintaining minor F of G via specific contractions within the disjoint sets such that F has O(n/log n) vertices. The combination of (F, 𝒫) is referred to as a cloud decomposition.
For planar graphs we show that a cloud decomposition can be constructed in O(n) time and using O(n) bits. Given a cloud decomposition (F, 𝒫) constructed for a planar graph G we are able to find a balanced separator of G in O(n/log n) time. Contrary to related publications, we do not make use of an embedding of the planar input graph. We generalize our cloud decomposition from planar graphs to H-minor-free graphs for any fixed graph H. This allows us to construct the succinct encoding scheme for H-minor-free graphs due to Blelloch and Farzan (CPM 2010) in O(n) time and O(n) bits improving both runtime and space by a factor of Θ(log n).
As an additional application of our cloud decomposition we show that, for H-minor-free graphs, a tree decomposition of width O(n^{1/2 + ε}) for any ε > 0 can be constructed in O(n) bits and a time linear in the size of the tree decomposition. A similar result by Izumi and Otachi (ICALP 2020) constructs a tree decomposition of width O(k √n log n) for graphs of treewidth k ≤ √n in sublinear space and polynomial time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • planar graph
  • H-minor-free
  • space-efficient
  • separator
  • tree decomposition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Luca Castelli Aleardi and Olivier Devillers. Array-based compact data structures for triangulations: Practical solutions with theoretical guarantees. J. Comput. Geom., 9(1):247-289, 2018. URL: https://doi.org/10.20382/jocg.v9i1a8.
  2. Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer. Dynamic updates of succinct triangulations. In Proceedings of the 17th Canadian Conference on Computational Geometry, CCCG'05, University of Windsor, Ontario, Canada, August 10-12, 2005, pages 134-137, 2005. URL: http://www.cccg.ca/proceedings/2005/45.pdf.
  3. Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer. Succinct representation of triangulations with a boundary. In Algorithms and Data Structures, pages 134-145. Springer, 2005. Google Scholar
  4. Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer. Succinct representations of planar maps. Theor. Comput. Sci., 408(2-3):174-187, 2008. URL: https://doi.org/10.1016/j.tcs.2008.08.016.
  5. Eric Allender and Meena Mahajan. The complexity of planarity testing. Inf. Comput., 189(1):117-134, 2004. URL: https://doi.org/10.1016/j.ic.2003.09.002.
  6. Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using o(n) bits. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation, pages 553-564, Cham, 2014. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-13075-0_44.
  7. Bas Fagginger Auer and Rob H Bisseling. Graph coarsening and clustering on the GPU. Graph Partitioning and Graph Clustering, 588:223, 2012. Google Scholar
  8. Bas O Fagginger Auer and Rob H Bisseling. A GPU algorithm for greedy graph matching. In Facing the Multicore-Challenge II, pages 108-119. Springer, 2012. Google Scholar
  9. Niranka Banerjee, Sankardeep Chakraborty, and Venkatesh Raman. Improved space efficient algorithms for BFS, DFS and applications. In Computing and Combinatorics, pages 119-130. Springer International Publishing, 2016. Google Scholar
  10. Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact representations of separable graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '03, pages 679-688. Society for Industrial and Applied Mathematics, 2003. Google Scholar
  11. Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In Proceedings of the 21st Annual Conference on Combinatorial Pattern Matching, CPM 2010, pages 138-150, 2010. Google Scholar
  12. Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks, 2021. URL: http://arxiv.org/abs/2102.01350.
  13. Cédric Chevalier and Ilya Safro. Comparison of coarsening schemes for multilevel graph partitioning. In Thomas Stützle, editor, Learning and Intelligent Optimization, Third International Conference, LION 3, Trento, Italy, January 14-18, 2009. Selected Papers, volume 5851 of Lecture Notes in Computer Science, pages 191-205. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11169-3_14.
  14. Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with applications to graph encoding and graph drawing. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '01, pages 506-515. Society for Industrial and Applied Mathematics, 2001. Google Scholar
  15. Reinhard Diestel, Alexander Schrijver, and Paul D. Seymour. Graph theory, 2007. Google Scholar
  16. Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded genus in logspace. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14, pages 383-392, New York, NY, USA, 2014. Association for Computing Machinery. URL: https://doi.org/10.1145/2591796.2591865.
  17. Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient Basic Graph Algorithms. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pages 288-301, Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2015.288.
  18. Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, and Chi Wang. Faster graph embeddings via coarsening. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 2953-2963. PMLR, 13-18 July 2020. URL: https://proceedings.mlr.press/v119/fahrbach20a.html.
  19. Volodymyr Floreskul, Konstantin Tretyakov, and Marlon Dumas. Memory-efficient fast shortest path estimation in large social networks. Proceedings of the International AAAI Conference on Web and Social Media, 8:91-100, 2014. URL: https://ojs.aaai.org/index.php/ICWSM/article/view/14532.
  20. Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput., 16(6):1004-1022, 1987. URL: https://doi.org/10.1137/0216064.
  21. John R Gilbert, Joan P Hutchinson, and Robert Endre Tarjan. A separator theorem for graphs of bounded genus. Journal of Algorithms, 5(3):391-407, 1984. URL: https://doi.org/10.1016/0196-6774(84)90019-1.
  22. Michael T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci., 51(3):374-389, December 1995. URL: https://doi.org/10.1006/jcss.1995.1076.
  23. Torben Hagerup. A constant-time colored choice dictionary with almost robust iteration. In 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 64:1-64:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.MFCS.2019.64.
  24. Torben Hagerup. Space-efficient dfs and applications to connectivity problems: Simpler, leaner, faster. Algorithmica, 82(4):1033-1056, 2020. URL: https://doi.org/10.1007/s00453-019-00629-x.
  25. Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-efficient Euler partition and bipartite edge coloring. Theoretical Computer Science, 754:16-34, 2019. Algorithms and Complexity. URL: https://doi.org/10.1016/j.tcs.2018.01.008.
  26. Xin He, Ming-Yang Kao, and Hsueh-I Lu. A fast general methodology for information-theoretically optimal encodings of graphs. SIAM J. Comput., 30(3):838-846, 2000. URL: https://doi.org/10.1137/S0097539799359117.
  27. Emilie Hogan, John R. Johnson, and Mahantesh Halappanavar. Graph coarsening for path finding in cybersecurity graphs. In Proceedings of the Eighth Annual Cyber Security and Information Intelligence Research Workshop, CSIIRW '13. Association for Computing Machinery, 2013. URL: https://doi.org/10.1145/2459976.2459984.
  28. John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549-568, October 1974. URL: https://doi.org/10.1145/321850.321852.
  29. Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N Variyam Vinodchandran, and Osamu Watanabe. An O(n^1/2+ε)-space and polynomial-time algorithm for directed planar reachability. In 2013 IEEE Conference on Computational Complexity, pages 277-286. IEEE, 2013. URL: https://doi.org/10.1109/CCC.2013.35.
  30. Taisuke Izumi and Yota Otachi. Sublinear-Space Lexicographic Depth-First Search for Bounded Treewidth Graphs and Planar Graphs. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 67:1-67:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.67.
  31. Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-efficient biconnected components and recognition of outerplanar graphs. Algorithmica, 81(3):1180-1204, 2019. URL: https://doi.org/10.1007/s00453-018-0464-z.
  32. Frank Kammer, Johannes Meintrup, and Andrej Sajenko. Space-efficient vertex separators for treewidth. CoRR, abs/1907.00676, 2019. URL: http://arxiv.org/abs/1907.00676.
  33. Frank Kammer and Andrej Sajenko. Simple 2^f-Color Choice Dictionaries. In 29th International Symposium on Algorithms and Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings in Informatics (LIPIcs), pages 66:1-66:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2018.66.
  34. G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Supercomputing '95:Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, pages 29-29, 1995. URL: https://doi.org/10.1109/SUPERC.1995.242800.
  35. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 20(1):359-392, 1998. Google Scholar
  36. Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed classes. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 153-162, 2010. URL: https://doi.org/10.1109/FOCS.2010.22.
  37. Kenneth Keeler and Jeffery Westbrook. Short encodings of planar graphs and maps. Discrete Appl. Math., 58(3):239-252, 1995. URL: https://doi.org/10.1016/0166-218X(93)E0150-W.
  38. Philip Klein and Shay Mozes. Separators in planar graphs, 2021. URL: http://planarity.org/Klein_separators_in_planar_graphs.pdf.
  39. Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decompositions for planar graphs in linear time. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC '13, pages 505-514, New York, NY, USA, 2013. Association for Computing Machinery. URL: https://doi.org/10.1145/2488608.2488672.
  40. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages 422-431, 1988. URL: https://doi.org/10.1109/SFCS.1988.21958.
  41. Richard J. Lipton, Donald J. Rose, and Robert E. Tarjan. Generalized nested dissection. SIAM Journal on Numerical Analysis, 16:346-358, 1977. Google Scholar
  42. Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. URL: https://doi.org/10.1137/0136016.
  43. Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci., 32(3):265-279, 1986. URL: https://doi.org/10.1016/0022-0000(86)90030-9.
  44. Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1-29, January 1997. URL: https://doi.org/10.1145/256292.256294.
  45. J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing, 31(3):762-776, 2001. URL: https://doi.org/10.1137/S0097539799364092.
  46. François Pellegrini and Jean Roman. Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs. In High-Performance Computing and Networking, pages 493-498. Springer Berlin Heidelberg, 1996. Google Scholar
  47. Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43-es, November 2007. URL: https://doi.org/10.1145/1290672.1290680.
  48. Omer Reingold. Undirected st-connectivity in log-space. Electronic Colloquium on Computational Complexity (ECCC), January 2004. URL: https://doi.org/10.1145/1060590.1060647.
  49. Peter Sanders and Christian Schulz. Advanced multilevel node separator algorithms. In Experimental Algorithms, pages 294-309. Springer International Publishing, 2016. Google Scholar
  50. Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks. In 28th Annual European Symposium on Algorithms (ESA 2020), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs), pages 81:1-81:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.81.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail